35 research outputs found

    Habitat quality, configuration and context effects on roe deer fecundity across a forested landscape mosaic

    Get PDF
    Effective landscape-scale management of source-sink deer populations will be strengthened by understanding whether local variation in habitat quality drives heterogeneity in productivity. We related female roe deer Capreolus capreolus fecundity and body mass to habitat composition and landscape context, separately for adults and yearlings, using multi-model inference (MMI) applied to a large sample of individuals (yearlings: fecundity=202, body mass=395; adults: fecundity=908, body mass=1669) culled during 2002-2015 from an extensive (195 km2) heterogeneous forest landscape. Adults were heavier (inter-quartile, IQ, effect size=+0.5kg) when culled in buffers comprising more arable lands while contrary to our prediction no effects on body mass of grassland, young forest or access to vegetation on calcareous soil were found. Heavier adults were more fertile (IQ effect size, +12% probability of having two embryos instead of one or zero). Counter-intuitively, adults with greater access to arable lands were less fecund (IQ effect of arable: -7% probability of having two embryos, instead of one or zero), and even accounting for greater body mass of adults with access to arable, their modelled fecundity was similar to or lower than that of adults in the forest interior. In contrast, effects of grassland, young forest and calcareous soil did not receive support. Yearling body mass had an effect on fecundity twice that found in adults (+23% probability of having one additional embryo), but yearling body mass and fecundity were not affected by any candidate habitat or landscape variables. Effect of arable lands on body mass and fecundity were small, with little variance explained (Coefficient of Variation of predicted fecundity across forest sub-regions=0.03 for adults). More variance in fecundity was attributed to other differences between forest management sub-regions (modelled as random effects), suggesting other factors might be important. When analysing source-sink population dynamics to support management, an average value of fecundity can be appropriate across a heterogeneous forest landscape

    Deer as vectors of plant dispersal in woodland networks

    No full text

    The dispersal of vascular plants in a forest mosaic by a guild of mammalian herbivores

    No full text
    Endozochorous seed dispersal by herbivores can affect plant spatial dynamics and macroecological patterns. We have investigated the number and species composition of viable seeds deposited in faeces of a full guild of macroherbivores (four deer and two lagomorph species) in a forest in eastern Britain. One hundred and one plant species germinated from faecal pellet material, 85 of which were among the 247 vascular plant species recorded in the forest. However, three species – Chenopodium album, Urtica dioica and Agrostis stolonifera – comprised 56% of the seedlings recorded. Of the species recorded in faecal samples, 36% had no recognised dispersal mechanism, while very few (7%) were adapted to endozoochorous dispersal (fleshy fruit or nut). The number of species dispersed by the herbivores was ranked Cervus elaphus and Dama dama (96) > Capreolus capreolus (40) > Muntiacus reevesi (31) > Oryctolagus cuniculus (21) > Lepus europaeus (19), with the other taxa dispersing subsets of those dispersed by C. elpahus and D. dama. The invasive M. reevesi deposited the fewest seeds per gram of faecal pellet material (0.4 g−1) and hence fewer seeds per unit area than other deer species despite their numerical dominance, while C. elaphus/D. dama deposited the most (0.43 seeds m−2 year−1). Due to differences in faecal seed density among habitats combined with the ranging behaviour of animals, more seeds were deposited in younger stands, enhancing the potential contribution of macroherbivores to population persistence by dispersal and colonisation in a successional mosaic
    corecore