124 research outputs found

    Analyses of the Impact of Soil Conditions and Soil Degradation on Vegetation Vitality and Crop Productivity Based on Airborne Hyperspectral VNIR–SWIR–TIR Data in a Semi-Arid Rainfed Agricultural Area (Camarena, Central Spain)

    Get PDF
    Soils are an essential factor contributing to the agricultural production of rainfed crops such as barley and triticale cereals. Changing environmental conditions and inadequate land management are endangering soil quality and productivity and, in turn, crop quality and productivity are affected. Advances in hyperspectral remote sensing are of great use for the spatial characterization and monitoring of the soil degradation status, as well as its impact on crop growth and agricultural productivity. In this study, hyperspectral airborne data covering the visible, near-infrared, short-wave infrared, and thermal infrared (VNIR–SWIR–TIR, 0.4–12 ”m) were acquired in a Mediterranean agricultural area of central Spain and used to analyze the spatial differences in vegetation vitality and grain yield in relation to the soil degradation status. Specifically, leaf area index (LAI), crop water stress index (CWSI), and the biomass of the crop yield are derived from the remote sensing data and discussed regarding their spatial differences and relationship to a classification of erosion and accumulation stages (SEAS) based on previous remote sensing analyses during bare soil conditions. LAI and harvested crop biomass yield could be well estimated by PLS regression based on the hyperspectral and in situ reference data (R2 of 0.83, r of 0.91, and an RMSE of 0.2 m2 m−2 for LAI and an R2 of 0.85, r of 0.92, and an RMSE of 0.48 t ha−1 for grain yield). In addition, the soil erosion and accumulation stages (SEAS) were successfully predicted based on the canopy spectral signal of vegetated crop fields using a random forest machine learning approach. Overall accuracy was achieved above 71% by combining the VNIR–SWIR–TIR canopy reflectance and emissivity of the growing season with topographic information after reducing the redundancy in the spectral dataset. The results show that the estimated crop traits are spatially related to the soil’s degradation status, with shallow and highly eroded soils, as well as sandy accumulation zones being associated with areas of low LAI, crop yield, and high crop water stress. Overall, the results of this study illustrate the enormous potential of imaging spectroscopy for a combined analysis of the plant-soil system in the frame of land and soil degradation monitoring

    A Spectral Transfer Function to Harmonize Existing Soil Spectral Libraries Generated by Different Protocols

    Get PDF
    Soil spectral libraries (SSLs) are important big-data archives (spectra associated with soil properties) that are analyzed via machine-learning algorithms to estimate soil attributes. Since different spectral measurement protocols are applied when constructing SSLs, it is necessary to examine harmonization techniques to merge the data. In recent years, several techniques for harmonization have been proposed, among which the internal soil standard (ISS) protocol is the most largely applied and has demonstrated its capacity to rectify systematic effects during spectral measurements. Here, we postulate that a spectral transfer function (TF) can be extracted between existing (old) SSLs if a subset of samples from two (or more) different SSLs are remeasured using the ISS protocol. A machine-learning TF strategy was developed, assembling random forest (RF) spectral-based models to predict the ISS spectral condition using soil samples from two existing SSLs. These SSLs had already been measured using different protocols without any ISS treatment the Brazilian (BSSL, generated in 2019) and the European (LUCAS, generated in 2009-2012) SSLs. To verify the TF's ability to improve the spectral assessment of soil attributes after harmonizing the different SSLs' protocols, RF spectral-based models for estimating organic carbon (OC) in soil were developed. The results showed high spectral similarities between the ISS and the ISS-TF spectral observations, indicating that post-ISS rectification is possible. Furthermore, after merging the SSLs with the TFs, the spectral-based assessment of OC was considerably improved, from R2 = 0.61, RMSE (g/kg) = 12.46 to R2 = 0.69, RMSE (g/kg) = 11.13. Given our results, this paper enhances the importance of soil spectroscopy by contributing to analyses in remote sensing, soil surveys, and digital soil mapping

    An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources

    Get PDF
    [EN] The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m-1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.The authors would like to thank the European Commission and Netherlands Organisation for Scientific Research (NWO) for funding, in the frame of the collaborative international consortium (iAqueduct) financed under the 2018 Joint call of the Water Works 2017 ERA-NET Cofund. This ERA-NET is an integral part of the activities developed by the Water JPI (Project number: ENWWW.2018.5); the EC and the Swedish Research Council for Sustainable Development (FORMAS, under grant 2018-02787); Contributions of B. Szabo was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4).Su, Z.; Zeng, Y.; Romano, N.; Manfreda, S.; Francés, F.; Ben Dor, E.; Szabó, B.... (2020). An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water. 12(5):1-36. https://doi.org/10.3390/w12051495S13612

    Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century

    Get PDF
    Spectroscopic measurements of soil samples are reliable because they are highly repeatable and reproducible. They characterise the samples' mineral-organic composition. Estimates of concentrations of soil constituents are inevitably less precise than estimates obtained conventionally by chemical analysis. But the cost of each spectroscopic estimate is at most one-tenth of the cost of a chemical determination. Spectroscopy is cost-effective when we need many data, despite the costs and errors of calibration. Soil spectroscopists understand the risks of over-fitting models to highly dimensional multivariate spectra and have command of the mathematical and statistical methods to avoid them. Machine learning has fast become an algorithmic alternative to statistical analysis for estimating concentrations of soil constituents from reflectance spectra. As with any modelling, we need judicious implementation of machine learning as it also carries the risk of over-fitting predictions to irrelevant elements of the spectra. To use the methods confidently, we need to validate the outcomes with appropriately sampled, independent data sets. Not all machine learning should be considered 'black boxes'. Their interpretability depends on the algorithm, and some are highly interpretable and explainable. Some are difficult to interpret because of complex transformations or their huge and complicated network of parameters. But there is rapidly advancing research on explainable machine learning, and these methods are finding applications in soil science and spectroscopy. In many parts of the world, soil and environmental scientists recognise the merits of soil spectroscopy. They are building spectral libraries on which they can draw to localise the modelling and derive soil information for new projects within their domains. We hope our article gives readers a more balanced and optimistic perspective of soil spectroscopy and its future. Highlights Spectroscopy is reliable because it is a highly repeatable and reproducible analytical technique. Spectra are calibrated to estimate concentrations of soil properties with known error. Spectroscopy is cost-effective for estimating soil properties. Machine learning is becoming ever more powerful for extracting accurate information from spectra, and methods for interpreting the models exist. Large libraries of soil spectra provide information that can be used locally to aid estimates from new samples
    • 

    corecore