131 research outputs found

    The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS3_3

    Full text link
    Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS3_3, a quasi-two dimensional antiferromagnet with spin S=1S = 1 on a honeycomb lattice. The spectra show clear, dispersive magnons with a ∼7\sim 7 meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb planes. Magnetic exchange interactions up to the third intraplanar nearest-neighbour were required. The fits show robustly that NiPS3_3 has an easy axis anisotropy with Δ=0.3\Delta = 0.3 meV and that the third nearest-neighbour has a strong antiferromagnetic exchange of J3=−6.90J_3 = -6.90 meV. The data can be fitted reasonably well with either J1<0J_1 < 0 or J1>0J_1 > 0, however the best quantitative agreement with high-resolution data indicate that the nearest-neighbour interaction is ferromagnetic with J1=1.9J_1 = 1.9 meV and that the second nearest-neighbour exchange is small and antiferromagnetic with J2=−0.1J_2 = -0.1 meV. The dispersion has a minimum in the Brillouin zone corner that is slightly larger than that at the Brillouin zone center, indicating that the magnetic structure of NiPS3_3 is close to being unstable.Comment: 21 pages, 7 figures, 33 reference

    Magnetic Excitations of Undoped Iron Oxypnictides

    Full text link
    We study the magnetic excitations of undoped iron oxypnictides using a three-dimensional Heisenberg model with single-ion anisotropy. Analytic forms of the spin wave dispersion, velocities, and structure factor are given. Aside from quantitative comparisons which can be made to inelastic neutron scattering experiments, we also give qualitative criteria which can distinguish various regimes of coupling strength. The magnetization reduction due to quantum zero point fluctuations shows clear dependence on the c-axis coupling.Comment: 4 pages, 5 figures, to appear in Frontiers of Physics in China: a special issue on Iron-based superconductor

    Investigation of the dynamics of 1-octene adsorption at 293 K in a ZSM-5 catalyst by inelastic and quasielastic neutron scattering

    Get PDF
    The properties of 1-octene adsorbed in zeolite ZSM-5 at 293 K are studied by means of inelastic and quasielastic neutron scattering (INS and QENS) in order to investigate interactions relevant to the zeolite solid acid catalysis of fluidised catalytic cracking reactions. The INS spectrum is compared to that recorded for the solid alkene and reveals significant changes of bonding on adsorption at ambient temperatures; the changes are attributed to the oligomerization of the adsorbed 1-octene to form a medium chain n-alkane or n-alkane cation. QENS analysis shows that these oligomers are immobilised within the zeolite pore structure but a temperature-dependant fraction is able to rotate around their long axis within the pore channels

    X-ray Resonant Scattering Study of the Order Parameters in Multiferroic TbMnO3_3

    Full text link
    We report on an extensive investigation of the multiferroic compound TbMnO3_3. Non-resonant x-ray magnetic scattering (NRXMS) revealed a dominant AA-type domain. The temperature dependence of the intensity and wavevector associated with the incommensurate magnetic order was found to be in good agreement with neutron scattering data. XRS experiments were performed in the vicinity of the Mn KK and Tb L3L_3 edges in the high-temperature collinear phase, the intermediate temperature cycloidal/ferroelectric phase, and the low-temperature phase. In the collinear phase resonant E1−E1E1-E1 satellites were found at the Mn KK edge associated with AA-type but also FF-type peaks. The azimuthal dependence of the FF-type satellites (and their absence in the NRXMS experiments) indicates that they are most likely non-magnetic in origin. We suggest instead that they may be associated with an induced charge multipole. At the Tb L3L_3 edge resonant AA- and FF-type satellites (E1−E1E1-E1) were observed in the collinear phase. These we attribute to a polarisation of the Tb 5dd states by the ordering of the Mn sublattice. In the cycloidal/ferroelectric phase a new set of resonant satellites appear corresponding to CC-type order. These appear at the Tb L3L_3 edge only. In addition to a dominant E1−E1E1-E1 component in the σ−π′\sigma-\pi^\prime channel, a weaker component is found in the pre-edge with σ−σ′\sigma-\sigma^\prime polarization. Calculations of the XRS were performed using the FDMNESFDMNES code showing that the unrotated σ−σ′\sigma-\sigma^\prime component of the Tb L3L_3 CC-type peaks appearing in the ferroelectric phase contains a contribution from a multipole that is odd with respect to both space and time, known in various contexts as the anapole.Comment: Phys. Rev. B (In press

    An x-ray resonant diffraction study of multiferroic DyMn2O5

    Full text link
    X-ray resonant scattering has been used to measure the magnetic order of the Dy ions below 40K in multiferroic DyMn2_{2}O5_{5}. The magnetic order has a complex behaviour. There are several different ordering wavevectors, both incommensurate and commensurate, as the temperature is varied. In addition a non-magnetic signal at twice the wavevector of one of the commensurate signals is observed, the maximum intensity of which occurs at the same temperature as a local maximum in the ferroelectric polarisation. Some of the results, which bear resemblence to the behaviour of other members of the RMn2_{2}O5_{5} family of multiferroic materials, may be explained by a theory based on so-called acentric spin-density waves.Comment: 8 pages, 8 figure

    Normal State Spin Dynamics of Five-band Model for Iron-pnictides

    Full text link
    Normal state spin dynamics of the recently discovered iron-pnictide superconductors is discussed by calculating spin structure factor S(q, omega) in an itinerant five-band model within RPA approximation. Due to the characteristic Fermi surface structure of iron-pnictide, column like response is found at (pi, 0) in extended Brillouin zone in the undoped case, which is consistent with the recent neutron scattering experiment. This indicates that the localized spin model is not necessary to explain the spin dynamics of this system. Furthermore, we show that the temperature dependence of inelastic neutron scattering intensity can be well reproduced in the itinerant model. We also study NMR 1/T_1T in the same footing calculation and show that the itinerant model can capture the magnetic property of iron-pnictide superconductors.Comment: 4 page

    Nature of the magnetic order in the charge-ordered cuprate La1.48Nd0.4Sr0.12CuO4

    Get PDF
    Using polarized neutron scattering we establish that the magnetic order in La1.48Nd0.4Sr0.12CuO4 is either (i) one dimensionally modulated and collinear, consistent with the stripe model or (ii) two dimensionally modulated with a novel noncollinear structure. The measurements rule out a number of alternative models characterized by 2D electronic order or 1D helical spin order. The low-energy spin excitations are found to be primarily transversely polarized relative to the stripe ordered state, consistent with conventional spin waves
    • …
    corecore