160 research outputs found

    Velocity map imaging of the dynamics of the CH3 + HCl -> CH4 + Cl reaction using a dual molecular beam method

    Get PDF
    International audienceThe reactions CH3 + HCl → CH4 + Cl(<sup>2</sup>P<sub>3/2</sub>) and CD<sub>3</sub> + HCl → CD<sub>3</sub>H + Cl(<sup>2</sup>P<sub>3/2</sub>) have been studied by photo-initiation (by CH<sub>3</sub>I or CD<sub>3</sub>I photolysis at 266 nm) in a dual molecular beam apparatus. Product Cl(<sup>2</sup>P</sub>3/2</sub>) atoms were detected using resonance enhanced multi-photon ionisation and velocity map imaging, revealing product translational energy and angular scattering distributions in the centre-of-mass frame. Image analysis is complicated by the bimodal speed distribution of CH<sub>3</sub> (and CD<sub>3</sub>) radicals formed in coincidence with I(<sup>2</sup>P<sub>3/2</sub>) and I(<sup>2</sup>P<sub>1/2</sub>) atoms from CH<sub>3</sub>I (CD<sub>3</sub>I) photodissociation, giving overlapping Newton diagrams with displaced centre of mass velocities. The relative reactivities to form Cl atoms are greater for the slower CH<sub>3</sub> speed group than the faster group by factors of ~1.5 for the reaction of CH<sub>3</sub> and ~2.5 for the reaction of CD<sub>3</sub>, consistent with the greater propensity of the faster methyl radicals to undergo electronically adiabatic reactions to form Cl(<sup>2</sup>P<sub>1/2</sub>). The average fraction of the available energy becoming product translational energy is = 0.48 ± 0.05 and 0.50 ± 0.03 for reaction of the faster and slower sets of CH<sub>3</sub> radicals, respectively. The Cl atoms are deduced to be preferentially forward scattered with respect to the HCl reagents, but the angular distributions from the dual beam imaging experiments require correction for under-detection of forward scattered Cl products

    Tetanus

    Get PDF
    This issue of eMedRef provides information to clinicians on the pathophysiology, diagnosis, and therapeutics of tetanus

    Electronic Relaxation Dynamics of UV-Photoexcited 2-Aminopurine–Thymine Base Pairs in Watson-Crick and Hoogsteen Conformations

    Get PDF
    The fluorescent analogue 2-aminopurine (2AP) of the canonical nucleobase adenine (6-aminopurine) base-pairs with thymine (T) without disrupting the helical structure of DNA. It therefore finds frequent use in molecular biology for probing DNA and RNA structures and conformational dynamics. However, detailed understanding of the processes responsible for fluorescence quenching remains largely elusive on a fundamental level. Although attempts have been made to ascribe decreased excited-state lifetimes to intrastrand charge-transfer and stacking interactions, possible influences from dynamic interstrand H-bonding have been widely ignored. Here, we investigate the electronic relaxation of UV-excited 2AP center dot T in Watson Crick (WC) and Hoogsteen (HS) conformations. Although the WC conformation features slowed-down, monomer-like electronic relaxation in tau similar to 1.6 ns toward ground-state recovery and triplet formation, the dynamics associated with 2AP center dot T in the HS motif exhibit faster deactivation in tau similar to 70 ps. As recent research has revealed abundant transient interstrand H-bonding in the Hoogsteen motif for duplex DNA, the established model for dynamic fluorescence quenching may need to be revised in the light of our results. The underlying supramolecular photophysical mechanisms are discussed in terms of a proposed excited-state double-proton transfer as an efficient deactivation channel for recovery of the HS species in the electronic ground state

    Formation of sinuous ridges by inversion of river-channel belts in Utah, USA, with implications for Mars

    Get PDF
    Sinuous ridges are important landforms on the surface of Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these ridges to river channels in planform led to a hypothesis that ridges are topographically inverted river channels, or “inverted channels”, formed due to an erosion-resistant channel-filling material that preserved a snapshot of the channel geometry in inverted relief due to differential erosion. An alternative deposit-inversion hypothesis proposes that ridges represent exhumed river-channel belts, with geometries that reflect the lateral migration and vertical aggradation of rivers over significant geologic time, rather than the original channel geometry. To investigate these hypotheses we studied sinuous ridges within the Cretaceous Cedar Mountain Formation near Green River, Utah, USA. Ridges in Utah extend for hundreds of meters, are up to 120 m wide, and stand up to 39 m above the surrounding plain. Ridges are capped by sandstone bodies 3–10 m thick that contain dune- and bar-scale inclined stratification, which we interpret as eroded remnants of channel belts that record the migration and aggradation of single-thread, sand-bedded rivers, rather than channel fills that can preserve the original channel geometry. Caprocks overlie mudstones and thinner sandstone beds that are interpreted as floodplain deposits, and in cases additional channel-belt sandstones are present lower in the ridge stratigraphy. Apparent networks from branching ridges typically represent discrete sandstone bodies that cross at different stratigraphic levels rather than a coeval river network. Ridge-forming sandstone bodies also have been narrowed during exhumation by cliff retreat and bisected by fluvial erosion. Using a large compilation of channel-belt geometries on Earth and our measurements of ridges in Utah, we propose that caprock thickness is the most reliable indicator of paleo-channel geometry, and can be used to reconstruct river depth and discharge. In contrast, channel lateral migration and caprock erosion during exhumation make ridge breadth an uncertain proxy for channel width. An example in Aeolis Dorsa, Mars, illustrates that river discharge estimates based solely on caprock width may differ significantly from estimates based on caprock thickness. Overall, our study suggests that sinuous ridges are not inverted channel fills, but rather reflect exhumation of a thick stratigraphic package of stacked channel belts and overbank deposits formed from depositional rivers over significant geologic time

    Mathematicians’ Central Role in Educating the STEM Workforce

    Get PDF
    In the recent report Engage to Excel,1 President Obama’s Council of Advisors on Science and Technology (PCAST) identifies mathematics as a bottleneck in undergraduate Science, Technology, Engineering, and Mathematics (STEM) education. Among PCAST’s recommendations are ones calling for the development and teaching of college-level mathematics courses “by faculty from mathematics-intensive disciplines other than mathematics” and for “a new pathway for producing K–12 mathematics teachers…in programs in mathematics-intensive fields other than mathematics.”2 While we are in sharp disagreement with these specific recommendations, we do share PCAST’s concern for the state of STEM education. We encourage the mathematics community to focus constructively on the broad view the report sketches. We appeal to the community to amplify its communications with other STEM disciplines, to publicize its teaching innovations, and to redouble its efforts to meet the challenges discussed by PCAST

    Contrasting ring-opening propensities in UV-excited α-pyrone and coumarin

    Get PDF
    Ring-opening quantum yields following UV-photoexcitation of coumarin and α-pyrone are influenced by the dynamics through, rather than just the geometries of, conical intersections.</p

    A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats

    Get PDF
    White-nose syndrome (WNS) is a disease responsible for unprecedented mortality in hibernating bats in the northeastern U.S. This previously unrecognized disease has spread very rapidly since its discovery in January 2007, and poses a considerable threat to hibernating bats throughout North America. As WNS spreads, the challenges for understanding and managing the disease continue to increase. Given the escalating complexity of these challenges, a highly coordinated effort is required for State, Federal, and Tribal wildlife agencies, and private partners to respond effectively to WNS and conserve species of bats. The plan proposed herein details the elements that are critical to the investigation and management of WNS, identifies key action items to address stated goals, and outlines the role(s) of agencies and entities involved in this continental effort
    corecore