29 research outputs found

    Cal Poly Microgrid Fixed PV Array

    Get PDF
    The Mechanical Engineering Department at California Polytechnic State University of San Luis Obispo would like an adjustable, fixed angle solar panel mount to help educate students on basic solar energy principles. Our team has developed a unique sawhorse design utilizing ideation techniques and design selection tools. The selected design allows for multiple panel adjustability and control of both azimuth and tilt angle. Safety concerns are addressed with action plans to mitigate risk. Concept prototypes to justify gearbox functionality and subsystem cohesion was utilized to reduce manufacturing issues. Manufacturing began in March 2020 and proceed through until the end of the month. The manufacturing of the mount was halted due to COVID-19, forcing the design to end strictly in a what-if manufacturing procedure to allow the construction of it to be done in future time

    Reconnecting with nature for sustainability

    Get PDF
    Calls for humanity to ‘reconnect to nature’ have grown increasingly louder from both scholars and civil society. Yet, there is relatively little coherence about what reconnecting to nature means, why it should happen and how it can be achieved. We present a conceptual framework to organise existing literature and direct future research on human–nature connections. Five types of connections to nature are identified: material, experiential, cognitive, emotional, and philosophical. These various types have been presented as causes, consequences, or treatments of social and environmental problems. From this conceptual base, we discuss how reconnecting people with nature can function as a treatment for the global environmental crisis. Adopting a social–ecological systems perspective, we draw upon the emerging concept of ‘leverage points’—places in complex systems to intervene to generate change—and explore examples of how actions to reconnect people with nature can help transform society towards sustainability

    Designing coastal conservation to deliver ecosystem and human well-being benefits

    No full text
    <div><p>Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels.</p></div

    Showing 10-ha hexagon spatial planning units used in the WLECCV optimization analysis.

    No full text
    <p>Framework is shown here overlaid on the northern reach of the Detroit River, including portions of Michigan U.S.A. and Ontario, Canada. Data credits: States/Provinces from U.S. States and Canada Provinces, Tele Atlas North America, Inc.; Cities from U.S. Cities, Data and maps for ArcGIS, ESRI; U.S. and Canada City points, Tele Atlas North America, Inc.; Lakes from Great Lakes GIS, Institute for Fisheries Research, Michigan Department of Natural Resources Fisheries Division and University of Michigan, School of Natural Resources; Great Lakes Basin from Great Lakes GIS, Institute for Fisheries Research, Michigan Department of Natural Resources Fisheries Division and University of Michigan, School of Natural Resources; Roads from U.S. and Canada Major Roads, Tele Atlas North America, Inc.</p

    Results for Scenarios 2–5 based on four different human well-being target scenarios.

    No full text
    <p>Scenario 2 (targets based on workshop survey scores normalized to 75); Scenario 3 (targets based on workshop survey scores normalized to 50); Scenario 4 (targets based on workshop survey scores normalized to 25); Scenario 5 (targets based on workshop survey scores normalized to 0). Darker colors represent higher priority areas for conservation or restoration. Data credits: States/Provinces from U.S. States and Canada Provinces, Tele Atlas North America, Inc.; Cities from U.S. Cities, Data and maps for ArcGIS, ESRI; U.S. and Canada City points, Tele Atlas North America, Inc.; Lakes from Great Lakes GIS, Institute for Fisheries Research, Michigan Department of Natural Resources Fisheries Division and University of Michigan, School of Natural Resources.</p

    Results for Scenario 1.

    No full text
    <p>Targets based on workshop survey scores normalized to 100. Darker colors represent higher priority areas for conservation or restoration. Data credits: States/Provinces from U.S. States and Canada Provinces, Tele Atlas North America, Inc.; Cities from U.S. Cities, Data and maps for ArcGIS, ESRI; U.S. and Canada City points, Tele Atlas North America, Inc.; Lakes from Great Lakes GIS, Institute for Fisheries Research, Michigan Department of Natural Resources Fisheries Division and University of Michigan, School of Natural Resources.</p

    Importance scores for human well-being features in the western Lake Erie basin.

    No full text
    <p>Scores based on workshop participants in OH, ON, and MI, and targets for those features at five levels obtained by normalizing the scores within varying ranges. We applied these five scenarios to understand how the human well-being features influence the overall conservation plan. Human well-being features that were added following the workshops, based on participant feedback, do not appear in this table; targets for those features were set based on relative similarity to other features.</p
    corecore