301 research outputs found
Genetic Evaluation of the Nine Component Features of Hip Score in UK Labrador Retrievers
The aim of this study was to explore the genetic relationship between the nine component traits comprising the British Veterinary Association (BVA) total hip score in UK registered Labrador Retrievers. Data consisted of 11,928 single records of trait scores of dogs aged between one and four years (365–1459 days) old, from radiographs evaluated between 2000 and 2007. Pedigree information was provided by the UK Kennel Club. The distribution of trait scores showed only small numbers of dogs with visible malformation in the six traits that were scored according to the severity of osteoarthritis. Linear mixed models were fitted using ASREML. Estimates of heritability ranged from 0.15 to 0.38, and litter effects from 0.04 to 0.10. Genetic correlations between all nine traits were extremely high ranging from 0.71 to 1.0, implying considerable genetic similarity. The decomposition demonstrated that aggregate scores of only the 3 traits indicative of laxity in one year old dogs was predictive of the phenotype of the remaining six scored on osteoarthritic severity in dogs at 4+ years old. The application of selection index methodology in selecting against hip dysplasia using the trait scores was explored and potential improvements in accuracy (directly related to response to selection) of over 10% are reported compared to the current total hip score. This study demonstrates that traits descriptive of joint laxity are valuable early-age predictors of osteoarthritis and shows that there is scope for improvement in the way data from the UK hip score scheme are used for selection against hip dysplasia in Labradors. This was verified via use of selection indices, which identified substantial increases in accuracy, not only via optimum coefficients, but also through an easily applicable aggregate of scores of just two or three traits only compared with the current total hip score
The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis
Cancer evolves through the accumulation of mutations, but the order in which mutations occur is poorly understood. Inference of a temporal ordering on the level of genes is challenging because clinically and histologically identical tumors often have few mutated genes in common. This heterogeneity may at least in part be due to mutations in different genes having similar phenotypic effects by acting in the same functional pathway. We estimate the constraints on the order in which alterations accumulate during cancer progression from cross-sectional mutation data using a probabilistic graphical model termed Hidden Conjunctive Bayesian Network (H-CBN). The possible orders are analyzed on the level of genes and, after mapping genes to functional pathways, also on the pathway level. We find stronger evidence for pathway order constraints than for gene order constraints, indicating that temporal ordering results from selective pressure acting at the pathway level. The accumulation of changes in core pathways differs among cancer types, yet a common feature is that progression appears to begin with mutations in genes that regulate apoptosis pathways and to conclude with mutations in genes involved in invasion pathways. H-CBN models provide a quantitative and intuitive model of tumorigenesis showing that the genetic events can be linked to the phenotypic progression on the level of pathways
Epigenetic Silencing in Friedreich Ataxia Is Associated with Depletion of CTCF (CCCTC-Binding Factor) and Antisense Transcription
Background: Over 15 inherited diseases are caused by expansion of triplet-repeats. Friedreich ataxia (FRDA) patients are homozygous for an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. The expanded GAA triplet-repeat results in deficiency of FXN gene transcription, which is reversed via administration of histone deacetylase inhibitors indicating that transcriptional silencing is at least partially due to an epigenetic abnormality. Methodology/Principal Findings: We found a severe depletion of the chromatin insulator protein CTCF (CCCTC-binding factor) in the 59UTR of the FXN gene in FRDA, and coincident heterochromatin formation involving the +1 nucleosome via enrichment of H3K9me3 and recruitment of heterochromatin protein 1. We identified FAST-1 (FXN Antisense Transcript – 1), a novel antisense transcript that overlaps the CTCF binding site in the 59UTR, which was expressed at higher levels in FRDA. The reciprocal relationship of deficient FXN transcript and higher levels of FAST-1 seen in FRDA was reproduced in normal cells via knockdown of CTCF. Conclusions/Significance: CTCF depletion constitutes an epigenetic switch that results in increased antisense transcription, heterochromatin formation and transcriptional deficiency in FRDA. These findings provide a mechanistic basis for the transcriptional silencing of the FXN gene in FRDA, and broaden our understanding of disease pathogenesis in triplet-repea
The Retinitis Pigmentosa Mutation c.3444+1G>A in CNGB1 Results in Skipping of Exon 32
Retinitis pigmentosa (RP) is a severe hereditary eye disorder characterized by progressive degeneration of photoreceptors and subsequent loss of vision. Two of the RP associated mutations were found in the CNGB1 gene that encodes the B subunit of the rod cyclic nucleotide-gated channel (CNGB1a). One of them (c.3444+1G>A) is located at the donor site of exon 32 and has been proposed to result in a frameshift and truncation of the last 28 aa of the corresponding protein. However, this ambiguous conclusion was not verified by experimental data. Recently, another study reported that the last 28 aa of CNGB1a harbor a motif required for the proper targeting of this subunit to rod photoreceptor outer segments. This suggests that defective targeting is the major cause for the RP phenotype in affected patients. Here, we investigated the splicing of c.3444+1G>A by exon trapping experiments and could demonstrate that instead of the proposed truncation of the last 28 aa this mutation leads to replacement of the last 170 aa of CNGB1a by 68 unrelated amino acids. The 170 aa deletion covers the complete distal C-terminus including the last 10 aa of an important alpha (αC) helix within the ligand-binding domain of CNGB1a. When expressed in a heterologous expression system the corresponding mutant full-length CNGB1a subunit was more susceptible to proteosomal degradation compared to the wild-type counterpart. In conclusion, our experimental data do not support the hypothesis proposed by the original study on the c.3444+1G>A mutation. Based on this, we suggest that apart from the defective targeting other mechanisms may be responsible for the RP phenotype in affected individuals
Association of Caucasian-identified variants with colorectal cancer risk in Singapore Chinese
Background: Genome-wide association studies (GWAS) in Caucasians have identified fourteen index single nucleotide polymorphisms (iSNPs) that influence colorectal cancer (CRC) risk. Methods: We investigated the role of eleven iSNPs or surrogate SNPs (sSNPs), in high linkage disequilibrium (LD, r2≥0.8) and within 100 kb vicinity of iSNPs, in 2,000 age- and gender-matched Singapore Chinese (SCH) cases and controls. Results: Only iSNP rs6983267 at 8q24.21 and sSNPs rs6695584, rs11986063, rs3087967, rs2059254, and rs7226855 at 1q41, 8q23.3, 11q23.1, 16q22.1 and 18q21.1 respectively showed evidence of association with CRC risk, with odds ratios (OR) ranging from 1.13 to 1.40. sSNP rs827401 at 10p14 was associated with rectal cancer risk (OR = 0.74, 95% CI 0.63-0.88) but not disease prognosis (OR = 0.91, 95% CI 0.69-1.20). Interestingly, sSNP rs3087967 at 11q23.1 was associated with CRC risk in men (OR = 1.34, 95% CI 1.14-1.58) but not women (OR = 1.07, 95% CI: 0.88-1.29), suggesting a gender-specific role. Half of the Caucasian-identified variants, including the recently fine-mapped BMP pathway loci, BMP4, GREM1, BMP2 and LAMA 5, did not show any evidence for association with CRC in SCH (OR ~1; p-value >0.1). Comparing the results of this study with that of the Northern and Hong Kong Chinese, only variants at chromosomes 8q24.21, 10p14, 11q23.1 and 18q21.1 were replicated in at least two out of the three Chinese studies. Conclusions: The contrasting results between Caucasians and Chinese could be due to different LD patterns and allelic frequencies or genetic heterogeneity. The results suggest that additional common variants contributing to CRC predisposition remained to be identified. © 2012 Thean et al
Empirical Evaluation of Oligonucleotide Probe Selection for DNA Microarrays
DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications
Intelligence in Williams Syndrome Is Related to STX1A, Which Encodes a Component of the Presynaptic SNARE Complex
Although genetics is the most significant known determinant of human intelligence, specific gene contributions remain largely unknown. To accelerate understanding in this area, we have taken a new approach by studying the relationship between quantitative gene expression and intelligence in a cohort of 65 patients with Williams Syndrome (WS), a neurodevelopmental disorder caused by a 1.5 Mb deletion on chromosome 7q11.23. We find that variation in the transcript levels of the brain gene STX1A correlates significantly with intelligence in WS patients measured by principal component analysis (PCA) of standardized WAIS-R subtests, r = 0.40 (Pearson correlation, Bonferroni corrected p-value = 0.007), accounting for 15.6% of the cognitive variation. These results suggest that syntaxin 1A, a neuronal regulator of presynaptic vesicle release, may play a role in WS and be a component of the cellular pathway determining human intelligence
Sequence divergence of Mus spretus and Mus musculus across a skin cancer susceptibility locus
<p>Abstract</p> <p>Background</p> <p><it>Mus spretus </it>diverged from <it>Mus musculus </it>over one million years ago. These mice are genetically and phenotypically divergent. Despite the value of utilizing <it>M. musculus </it>and <it>M. spretus </it>for quantitative trait locus (QTL) mapping, relatively little genomic information on <it>M. spretus </it>exists, and most of the available sequence and polymorphic data is for one strain of <it>M. spretus</it>, Spret/Ei. In previous work, we mapped fifteen loci for skin cancer susceptibility using four different <it>M. spretus </it>by <it>M. musculus </it>F1 backcrosses. One locus, <it>skin tumor susceptibility 5 </it>(<it>Skts5</it>) on chromosome 12, shows strong linkage in one cross.</p> <p>Results</p> <p>To identify potential candidate genes for <it>Skts5</it>, we sequenced 65 named and unnamed genes and coding elements mapping to the peak linkage area in outbred <it>spretus</it>, Spret/EiJ, FVB/NJ, and NIH/Ola. We identified polymorphisms in 62 of 65 genes including 122 amino acid substitutions. To look for polymorphisms consistent with the linkage data, we sequenced exons with amino acid polymorphisms in two additional <it>M. spretus </it>strains and one additional <it>M. musculus </it>strain generating 40.1 kb of sequence data. Eight candidate variants were identified that fit with the linkage data. To determine the degree of variation across <it>M. spretus</it>, we conducted phylogenetic analyses. The relatedness of the <it>M. spretus </it>strains at this locus is consistent with the proximity of region of ascertainment of the ancestral mice.</p> <p>Conclusion</p> <p>Our analyses suggest that, if <it>Skts5 </it>on chromosome 12 is representative of other regions in the genome, then published genomic data for Spret/EiJ are likely to be of high utility for genomic studies in other <it>M. spretus </it>strains.</p
Epigenetic Modulation of miR-122 Facilitates Human Embryonic Stem Cell Self-Renewal and Hepatocellular Carcinoma Proliferation
The self-renewal capacity ascribed to hESCs is paralleled in cancer cell proliferation, suggesting that a common network of genes may facilitate the promotion of these traits. However, the molecular mechanisms that are involved in regulating the silencing of these genes as stem cells differentiate into quiescent cellular lineages remain poorly understood. Here, we show that a differentiated cell specific miR-122 exemplifies this regulatory attribute by suppressing the translation of a gene, Pkm2, which is commonly enriched in hESCs and liver cancer cells (HCCs), and facilitates self-renewal and proliferation. Through a series of gene expression analysis, we show that miR-122 expression is highly elevated in quiescent human primary hepatocytes (hPHs) but lost or attenuated in hESCs and HCCs, while an opposing expression pattern is observed for Pkm2. Depleting hESCs and HCCs of Pkm2, or overexpressing miR-122, leads to a common deficiency in self-renewal and proliferation. Likewise, during the differentiation process of hESCs into hepatocytes, a reciprocal expression pattern is observed between miR-122 and Pkm2. An examination of the genomic region upstream of miR-122 uncovered hyper-methylation in hESCs and HCCs, while the same region is de-methylated and occupied by a transcription initiating protein, RNA polymerase II (RNAPII), in hPHs. These findings indicate that one possible mechanism by which hESC self-renewal is modulated in quiescent hepatic derivatives of hESCs is through the regulatory activity of a differentiated cell-specific miR-122, and that a failure to properly turn “on” this miRNA is observed in uncontrollably proliferating HCCs
- …