3,801 research outputs found

    Wavefront sensing of atmospheric phase distortions at the Palomar 200-in. telescope and implications for adaptive optics

    Get PDF
    Major efforts in astronomical instrumentation are now being made to apply the techniques of adaptive optics to the correction of phase distortions induced by the turbulent atmosphere and by quasi-static aberrations in telescopes themselves. Despite decades of study, the problem of atmospheric turbulence is still only partially understood. We have obtained video-rate (30 Hz) imaging of stellar clusters and of single-star phase distortions over the pupil of the 200" Hale telescope on Palomar Mountain. These data show complex temporal and spatial behavior, with multiple components arising at a number of scale heights in the atmosphere; we hope to quantify this behavior to ensure the feasibility of adaptive optics at the Observatory. We have implemented different wavefront sensing techniques to measure aperture phase in wavefronts from single stars, including the classical Foucault test, which measures the local gradient of phase, and the recently-devised curvature sensing technique, which measures the second derivative of pupil phase and has formed the real-time wavefront sensor for some very productive astronomical adaptive optics. Our data, though not fast enough to capture all details of atmospheric phase fluctuations, provide important information regarding the capabilities that must be met by the adaptive optics system now being built for the 200" telescope by a team at the Jet Propulsion Lab. We describe our data acquisition techniques, initial results from efforts to characterize the properties of the turbulent atmosphere at Palomar Mountain, and future plans to extract additional quantitative parameters of use for adaptive optics performance predictions

    S-4B orbital workshop attitude control system study

    Get PDF
    Saturn S-4B orbital workshop attitude control system analysi

    Effective way to sum over long range Coulomb potentials in two and three dimensions

    Full text link
    I propose a method to calculate logarithmic interaction in two dimensions and coulomb interaction in three dimensions under periodic boundary conditions. This paper considers the case of a rectangular cell in two dimensions and an orthorhombic cell in three dimensions. Unlike the Ewald method, there is no parameter to be optimized, nor does it involve error functions, thus leading to the accuracy obtained. This method is similar in approach to that of Sperb [R. Sperb, Mol. Simulation, 22, 199 (1999).], but the derivation is considerably simpler and physically appealing. An important aspect of the proposed method is the faster convergence of the Green function for a particular case as compared to Sperb's work. The convergence of the sums for the most part of unit cell is exponential, and hence requires the calculation of only a few dozen terms. In a very simple way, we also obtain expressions for interaction for systems with slab geometries. Expressions for the Madelung constant of CsCl and NaCl are also obtained.Comment: To appear in Phy. Rev.

    Absence of Domain Wall Roughening in a Transverse Field Ising Model with Long-Range Interactions

    Full text link
    We investigate roughening transitions in the context of transverse-field Ising models. As a modification of the transverse Ising model with short range interactions, which has been shown to exhibit domain wall roughening, we have looked into the possibility of a roughening transition for the case of long-range interactions, since such a system is physically realized in the insulator LiHoF4. The combination of strong Ising anisotropy and long-range forces lead naturally to the formation of domain walls but we find that the long-range forces destroy the roughening transition.Comment: 7 pages, 5 figures, revtex

    Radio Emission from 3D Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification

    Get PDF
    We present the first radio emission simulations from high resolution three dimensional relativistic hydrodynamic jets, which allow for a study of the observational implications of the interaction between the jet and external medium. This interaction gives rise to a stratification of the jet where a fast spine is surrounded by a slow high energy shear layer. The stratification, and in particular the large specific internal energy and slow flow in the shear layer largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear) the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer, or presents a change in velocity. The asymmetry is more prominent in the polarized flux, because of field cancellation (or amplification) along the line of sight. Recent observations of jet cross section emission asymmetries in the blazar 1055+018 can be explained assuming the existence of a shear layer with a helical magnetic field.Comment: 6 pages, 5 figures, 1 latex style file, ApJL accepte

    The correlation between ovule quality parameters and the seed yield at Cyclamen persicum MILL.

    Get PDF
    Are there indicators that the seed yield at Cyclamen persicum is predetermined by the quality of ovules? This was the main question of these investigations.The aim of our study was to investigate why only some of the available ovules develop into mature seeds. We surmised that the quality of the ovules played an important role in this. In order to corroborate this theory, we examined specific ovule parameters and their correlation with seed yield.The parameters included the levels of callose in the nucellus, the heterogeneity of embryo sacs, the deviants in callose inclusion and the number of ovules examined by light and fluorescence microscopy.There is still considerable disagreement on the biological significance of the inclusion of callose in ovules. In our study, we were able to show that the inclusion of callose is essential for fertilization in the case of C. persicum. This appears to contradict the findings reported for other plant species, where the inclusion of callose has been evaluated as a sign of ovule degeneration. However, the results of our study clearly demonstrate that seed yield is already determined by the maternal plant during the ovule development phase, i. e. shortly before and at the beginning of anthesis.Some ovule parameters allow predictions to be made about the expected seed yield for the studied genotypes of C. persicum

    Computer simulations of two-dimensional melting with dipole-dipole interactions

    Full text link
    We perform molecular dynamics and Monte Carlo simulations of two-dimensional melting with dipole-dipole interactions. Both static and dynamic behaviors are examined. In the isotropic liquid phase, the bond orientational correlation length 6 and susceptibility 6 are measured, and the data are fitted to the theoretical ansatz. An algebraic decay is detected for both spatial and temporal bond orientational correlation functions in an intermediate temperature regime, and it provides an explicit evidence for the existence of the hexatic phase. From the finite-size scaling analysis of the global bond orientational order parameter, the disclination unbinding temperature Ti is estimated. In addition, from dynamic Monte Carlo simulations of the positional order parameter, we extract the critical exponents at the dislocation unbinding temperature Tm. All the results are in agreement with those from experiments and support the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory.Comment: 23 pages, 12figure

    Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals

    Full text link
    We develop a theory for the trajectory of an x ray in the presence of a crystal deformation. A set of equations of motion for an x-ray wave packet including the dynamical diffraction is derived, taking into account the Berry phase as a correction to geometrical optics. The trajectory of the wave packet has a shift of the center position due to a crystal deformation. Remarkably, in the vicinity of the Bragg condition, the shift is enhanced by a factor ω/Δω\omega /\Delta \omega (ω\omega: frequency of an x ray, Δω\Delta\omega: gap frequency induced by the Bragg reflection). Comparison with the conventional dynamical diffraction theory is also made.Comment: 4 pages, 2 figures. Title change

    Enhancement of Wigner crystallization in quasi low-dimensional solids

    Full text link
    The crystallization of electrons in quasi low-dimensional solids is studied in a model which retains the full three-dimensional nature of the Coulomb interactions. We show that restricting the electron motion to layers (or chains) gives rise to a rich sequence of structural transitions upon varying the particle density. In addition, the concurrence of low-dimensional electron motion and isotropic Coulomb interactions leads to a sizeable stabilization of the Wigner crystal, which could be one of the mechanisms at the origin of the charge ordered phases frequently observed in such compounds

    Probing metal ion binding and conformational properties of the colicin E9 endonuclease by electrospray ionization time-of-flight mass spectrometry

    Get PDF
    Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn2+. Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn2+-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability
    • …
    corecore