6 research outputs found

    Orthographic priming in Braille reading as evidence for task-specific reorganization in the ventral visual cortex of the congenitally blind

    Get PDF
    The task-specific principle asserts that, following deafness or blindness, the deprived cortex is reorganized in a manner such that the task of a given area is preserved even though its input modality has been switched. Accordingly, tactile reading engages the ventral occipitotemporal cortex (vOT) in the blind in a similar way to regular reading in the sighted. Others, however, show that the vOT of the blind processes spoken sentence structure, which suggests that the task-specific principle might not apply to vOT. The strongest evidence for the vOT's engagement in sighted reading comes from orthographic repetition-suppression studies. Here, congenitally blind adults were tested in an fMRI repetition-suppression paradigm. Results reveal a double dissociation, with tactile orthographic priming in the vOT and auditory priming in general language areas. Reconciling our finding with other evidence, we propose that the vOT in the blind serves multiple functions, one of which, orthographic processing, overlaps with its function in the sighted

    Structural reorganization of the early visual cortex following Braille training in sighted adults

    Get PDF
    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas

    Braille in the Sighted: Teaching Tactile Reading to Sighted Adults

    Get PDF
    International audienceBlind people are known to have superior perceptual abilities in their remaining senses. Several studies suggest that these enhancements are dependent on the specific experience of blind individuals, who use those remaining senses more than sighted subjects. In line with this view, sighted subjects, when trained, are able to significantly progress in relatively simple tactile tasks. However, the case of complex tactile tasks is less obvious, as some studies suggest that visual deprivation itself could confer large advantages in learning them. It remains unclear to what extent those complex skills, such as braille reading, can be learnt by sighted subjects. Here we enrolled twenty-nine sighted adults, mostly braille teachers and educators, in a 9-month braille reading course. At the beginning of the course, all subjects were naive in tactile braille reading. After the course, almost all were able to read whole braille words at a mean speed of 6 words-per-minute. Subjects with low tactile acuity did not differ significantly in braille reading speed from the rest of the group, indicating that low tactile acuity is not a limiting factor for learning braille, at least at this early stage of learning. Our study shows that most sighted adults can learn whole-word braille reading, given the right method and a considerable amount of motivation. The adult sensorimotor system can thus adapt, to some level, to very complex tactile tasks without visual deprivation. The pace of learning in our group was comparable to congenitally and early blind children learning braille in primary school, which suggests that the blind's mastery of complex tactile tasks can, to a large extent, be explained by experience-dependent mechanisms

    Outline of the study and timeline of the braille course.

    No full text
    <p>(A) Sighted adults underwent a 9-month braille course. They were tested behaviorally in the baseline testing session, four times during the course (i.e., in the 5<sup>th</sup>, 6<sup>th</sup>, 7<sup>th</sup> and 8<sup>th</sup> month of the course) and after the course. (B) The braille course consisted of three stages: tactile discrimination exercises, introducing half of the braille alphabet and learning the remaining half/whole-word reading.</p

    Sighted adults can learn whole-word braille reading.

    No full text
    <p>(A-B) Results of braille word reading test and braille letter reading test. Average number of braille words/letters read in one minute was plotted for each testing session. (C) Individual learning curves for braille word reading, plotted based on results of braille word reading test in each testing session. (D) Correlation between the tactile acuity (grating orientation threshold) at the end of the course and final braille word reading speed. Error bars represent 95% confidence intervals. Asterisks indicate a significant difference between the results of a specific testing session and a baseline testing session (*** p < 0.001).</p
    corecore