33 research outputs found

    Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides : the effect of ex vivo hydrolysis

    Get PDF
    A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV–Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the nhexyl group in EtOH had the highest PL quantumyield (Đ€=85%) compared to the others.Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+,Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivativewith a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented

    Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents

    Get PDF
    The paper reports a new route for the fabrication and determination of physicochemical properties and biological activity, of metallic silica-based nanostructure (Ag/SiO2, Cu/SiO2). A research studies shows mono-dispersed nanoparticles in silica matrix with an average size of 12 nm for silver, as well as 12 nm and 4 nm, respectively for copper in hydrophobic and hydrophilic silica composites. The chemical analysis highlights metallic silver and copper ions heterogeneously distributed in the composite as well as metallic oxides such as Ag2O, Cu2O and CuO in hydrophobic system, and CuO in hydrophilic one. Structural research evidences the presence of amorphous, stoichiometric and non-stoichiometric crystalline phase of silica. Biological studies reveal potentially inhibition of growth gram-positive and gram-negative bacteria as well as microscopic fungi. The size of metal nanoparticles and level of silica hydrophobicity show the highest inhibition bacterial growth for hydrophilic system with embedding inside them, 4 nm in size copper nanoparticles. Finally, cytotoxic interaction against human cells with respect to silver and copper silica-based nanocomposites was not found

    Luminescence and electrochemical activity of new unsymmetrical 3- imino-1,8-naphthalimide derivatives

    Get PDF
    A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120–164 C and underwent thermal decomposition above 280 C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest–host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging

    1,8-Naphthalimides 3-substituted with imine or ÎČ-ketoenamine unit evaluated as compounds for organic electronics and cell imaging

    Get PDF
    In this paper, we describe both new as well as described in our previous works 1,8- naphthalimide derivatives substituted at the 3-C position with imine or -ketoenamine unitin order to demonstrate a broader scope of research enabling of analysis between the structureproperties relationship relevant to the application of these compounds in organic electronics and cellular imaging. Thermal, physicochemical, optical, electrochemical, electroluminescence, and biological properties of a series of derivatives containing the 1,8-naphthalimideunit were tested and compared. This allowed the determination of impact of substituents in the imide part (hexylamine, phenylethyl, benzyl, fluorobenzyl, methylbenzyl), type of bond (imine or ketoenamine) as well as the substituent on the naphthalene ring (2-hydroxyphenyl, 5-bromo-2- hydroxyphenyl, 3,5-diodo-2-hydroxyphenyl, pyrimidines) on their properties. Moreover, the properties in the aggregating state were tested in the MeOH/PBS system. Imines are susceptible to the hydrolysis process and aggregation-caused photoluminescence quenching(ACQ). In turn,-ketoenamine shown excited-state intramolecular proton transfer promoted by aggregation (AIEE). Our studies can be helpful in the further design of compounds containing the 1,8- naphthalimide structure for various applications

    Effect of the complex-formation ability of thiosemicarbazones containing (aza)benzene or 3-nitro-1,8-naphthalimide unit towards Cu(II) and Fe(III) ions on their anticancer activity

    Get PDF
    We recently described a novel class of thiosemicarbazones (TSCs) with a high anticancer activity. Now, we expanded this compound library with a new class of TSCs with a 3-nitro-1,8-naphthalene unit. Thus, a series of novel TSC conjugates was obtained to determine the effect of its chemical structure on spectroscopic properties, metal complexing and biological activity. They were prepared in a microwave reactor, provided compounds with both a high yield and purity. Nuclear magnetic resonance (1H and 13C NMR, COSY, HMQC) and infrared spectroscopy were used to characterize them structurally. Additionally, DFT calculations were performed in order to obtain the optimized ground-state geometry. Physicochemical spectroscopic studies were conducted in different solvents and conditions to assess the effect of the substituent on the optical properties and metal complexing ability. The anticancer activity was tested on three cancer cell lines and then correlated with the spectroscopic results. Here, we show based on in vitro chelating studies, that anticancer activity is closely correlated with the Fe3+ and Cu2+ chelating ability of these compounds

    Synthesis and applications of [60]fullerene nanoconjugate with 5- aminolevulinic acid and its glycoconjugate as drug delivery vehicles

    Get PDF
    The 5-aminolevulinic acid (5-ALA) prodrug is widely used in clinical applications, primarily for skin cancer treatments and to visualize brain tumors in neurosurgery. Unfortunately, its applications are limited by unfavorable pharmacological properties, especially low lipophilicity; therefore, efficient nanovehicles are needed. For this purpose, we synthesized and characterized two novel water-soluble fullerene nanomaterials containing 5-ALA and D-glucuronic acid components. Their physicochemical properties were investigated using NMR, XPS, ESI mass spectrometry, as well as TEM and SEM techniques. In addition, HPLC and fluorescence measurements were performed to evaluate the biological activity of the fullerene nanomaterials in 5-ALA delivery and photodynamic therapy (PDT); additional detection of selected mRNA targets was carried out using the qRT-PCR methodology. The cellular response to the [60]fullerene conjugates resulted in increased levels of ABCG2 and PEPT-1 genes, as determined by qRT-PCR analysis. Therefore, we designed a combination PDT approach based on two fullerene materials, C60-ALA and C60-ALA-GA, along with the ABCG2 inhibitor Ko143

    High pressure as a novel tool for the cationic ROP of Îł-butyrolactone

    Get PDF
    In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of g-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T ÂŒ 278–323 K and p ÂŒ 700–1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (Mn ÂŒ 2200–9700 g mol 1; Đ ÂŒ 1.05–1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (MW) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only MW and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry

    Electronic Speckle Pattern Interferometry for Vibrational Analysis of Cutting Tools

    No full text
    A Michelson interferometer based ESPI system for static and vibration out of plane displacement measurements is presented. The aim of the article is to demonstrate the usability of ESPI non-contact measurement method in the field of machining. The correlation fringe patterns were visualized using custom software. The accuracy of ESPI interferometer was verified by the comparison with measurement results collected using industrial XL-80 laser system. The efficacy in vibration analysis was tested by studying the mode shapes and resonant frequencies of the transverse vibrations of square plates. The measurement methodology was used to determine natural frequencies and the shapes of vibrational modes of NFTe 100x1.2/64-II circular slitting saw. As a result the values of rotational speed that should be avoided during machining were determined

    FĂ„rö, Bergman’s Island

    No full text
    This paper is an attempt to investigate the relationship between Ingmar Bergman, the Swedish auteur and the island of FĂ„rö in the Baltic, where he worked and lived for 40 years. Bergman said: “If one wished to be solemn, it could be said that I had found my landscape, my real home; if one wished to be funny, one could talk about love at first sight.” He discovered the island when looking for a location to shoot Through a Glass Darkly. Including Through a Glass Darkly, Bergman was to shoot six films and one television series on FĂ„rö. He also made two documentary films about the island and its inhabitants: FĂ„rö Document 1969 and FĂ„rö Document 1979

    Sensitivity Analysis of Single- and Bimetallic Surface Plasmon Resonance Biosensors

    No full text
    Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations
    corecore