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A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthe-
sized. The structure of the obtained compounds was confirmed using 'H and '>C NMR, FT-IR spectroscopy and
elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and
biological properties of all of the prepared compounds were studied. It was found that the amine with the n-
hexyl group in EtOH had the highest PL quantum yield (¢ = 85%) compared to the others. Moreover, the chelat-
ing properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (A",
Ba?™,Co?*, Cu?t, Cr**, Fe?t, Fe3 T, Mn? T, Ni2*, Pb?*, Sr** and Zn?*) in an acetonitrile, acetone and PBS/AC mix-
ture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the
studied cations, while the unsubstituted derivative chelated only the trivalent cations such as A**, Cr** and
Fe>* in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demon-
strated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested
molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria
and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was
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presented.

© 2020 Published by Elsevier B.V.

1. Introduction

Compounds based on 1,8-naphthalimide unit have an extraordinary
thermal and chemical stability and beneficial photophysical properties
with high fluorescence quantum yields as well as a biological activity.
Therefore, they are widely investigated inter alia as optoelectronic ma-
terials, fluorescent sensors or compounds for bioimaging [1]. There are
many reports concerning fluorescent sensors that are based on 4-
substituted-1,8-naphthalimide [2], which have been successfully used
in cell imaging. These reports relate mainly using the sensor for detect-
ing Zn?* [3-6], Cu®™ [7], Cu™ [8], Hg?™ [9], trivalent cations (A’ T, Fe3 ™,
Cr>*) [10] and intracellular compounds, e.g. flufenamic acid [11] or gly-
cosidase [12]. The use of metal complexes that are based on 1,8-
naphthalimide in cell imaging such as the Re(I) complex [13] has also
been described. Nevertheless, there are only a few literature reports de-
voted to the sensors based on 3-substituted-1,8-naptalimides [14,15].
On the other hand, the literature has shown the biological activity of
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compounds that are based on a 1,8-naphthalimide unit substituted in
the 3- or 4- position [1,2,16-19]. Using sensors for mitochondrial imag-
ing mainly concerns a detecting reactive oxygen species (ROS), nitric
oxide, reactive sulfur species (RSS), thioredoxin (Trx), metal ions and
anions [20,21] as well as for detection of viscosity changes [22,23].
Moreover, the aggregation-induced emission luminogens (AlEgens)
are used to bioimage various organelles or other important intracellular
compounds [24-28]. Nevertheless, most organic dyes exhibit
aggregation-caused emission quenching (ACQ) [29] but some of the
1,8-naphthalimide derivatives are known as AlEgens [1].

In previous reports, we showed that 3-substituted-1,8-naptalimides
with imine linkages could be efficient materials for organic electronics
[30-33]. In addition, we reported the synthesis and use of quinoline de-
rivatives that also contained an imine bond in cell imaging [34,35]. The
aim of this work was to investigate a new family of molecules that have
3-substituted-1,8-naptalimide and salicylic imine derivatives as poten-
tial agents for cellular imaging. We showed that ketone-enol tautomer-
ism, in which a form of enol-imine is susceptible to hydrolysis, affected
the properties of a compound. It was also determined that the keto-
imine form was more stable in the cell environment and surprisingly,
that it restrained the hydrolysis of a compound.
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2. Experimental section
2.1. Synthesizing the salicylimine 1,8-naphalimide derivatives

The synthesis of the corresponding amines (stage I and II, Fig. 1) was
carried out according to the procedure described in the previous works
[31,33]. The procedure synthesis as well as the characteristics N-
substituted 3-amino-1,8-naphalimide derivatives was presented in the
supplementary materials (SM). However, below is the procedure for
the condensation of amines with salicylic derivatives (stage III, Fig. 1)
and their structural characteristics.

2.2. General procedure

1 mmol of the corresponding amine (1,2,3), 1 mmol of the
salicylaldehyde derivatives (salicylaldehyde, 5-bromosalicylaldehyde,
3,5-dijodosalicylaldehyde), 10 mL of EtOH and three drops
trifluoroacetic acid were introduced into the reaction. Next, the vial
was closed with a septum. The reaction was carried out for 2 h in an ul-
trasonic bath, after which the mixture was put into the freezer, and then
filtered and washed with ethanol. The product was crystallized from
ethyl acetate.

2.2.1. 3-(Imine-(2-hydroxyphenyl) )-N-hexyl-1,8-naphthalimide 1a
Yellow solid; Yield = 48%; Ty = 128 °C, TH NMR (500 MHz, DMSO) 6

12.71 (s, 1H),9.23 (s, 1H), 8.53 (d,] = 2.1 Hz, 1H), 8.46 (m, 1H), 8.45 (s,

1H), 8.44 (d,] = 2.1 Hz, 1H), 7.92-7.86 (m, 1H), 7.79 (m, 1H), 7.49-7.45

(m, 1H), 7.04 (m, 2H), 4.07-4.03 (m, 2H), 1.65 (m, 2H), 1.39-1.28 (m,
6H), 0.89-0.82 (m, 3H). C NMR (126 MHz, DMSO) 6 165.59, 163.76,
163.58, 160.77, 147.40, 134.69, 134.38, 133.11, 132.82, 130.69, 128.40,
126.52, 126.07, 124.99, 123.95, 122.62, 119.95, 119.86, 117.21, 31.42,
27.88,26.64, 22.44, 14.38. FTIR (KBr, v, cm™'): 3435 (N-H---0, hydrogen
bonding), 3139-2992 (C—H aromatic); 2990-2780 (C—H aliphatic);
1698 and 1663 (C=O0 imide); 1611 (C=C); 1575 (C=C aromatic);
1335 (C—N, aromatic amines). Anal. Calcd for C;5H24N,05 (400.47 g/
mol): C(74.98%) H(6.04%) N(7.00%); found: C(74.67%) H(5.93%) N
(7.28%).

2.2.2. 3-(Imine-(5-bromo-2-hydroxyphenyl) )-N-hexyl-1,8-naphthalimide
1b

Yellow solid; Yield = 64%; Ty = 150 °C, 'H NMR (500 MHz, DMSO) 6
12.58 (s, 1H), 9.14 (s, 1H), 8.46 (d,] = 2.1 Hz, 1H), 841 (d,] = 0.9 Hz,
1H), 8.40-8.39 (m, 1H), 8.36 (d,J = 2.1 Hz, 1H), 7.95 (d, ] = 2.6 Hz,
1H), 7.85 (dd,J = 8.1, 7.4 Hz, 1H), 7.57 (dd, ] = 8.8, 2.6 Hz, 1H), 6.97
(d, ] = 8.8 Hz, 1H), 4.06-3.99 (m, 2H), 1.63 (m, 2H), 1.38-1.26 (m,
6H), 0.86 (m, 3H). "*C NMR (126 MHz, DMSO) & 163.65, 163.58,
163.46, 159.69, 147.13, 136.46, 134.68, 134.24, 132.69, 130.74, 128.37,
126.55, 126.34, 124.64, 123.89, 122.55, 121.89, 119.61, 110.65, 31.41,
27.85,26.65, 22.44, 14.38. FTIR (KBr, v, cm™'): 3435 (N-H---0, hydrogen
bonding), 3139-2992 (C—H aromatic); 2990-2780 (C—H aliphatic);
1700 and 1661 (C=O0 imide); 1610 (C=C); 1582 (C=C aromatic);
1332 (C—N, aromatic amines). Anal. Calcd for Cy5H,3BrN,O3
(479.37 g/mol): C(62.64%) H(4.84%) N(5.84%); found: C(62.55%) H
(5.08%) N(5.81%).
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Fig. 1. a) Synthesis scheme of naphthalimide derivatives: (I) 3-nitro-1,8-naphthalic anhydride, amine (n-hexylamine, 2,4-dimethylaniline, benzylamine), EtOH, 2 h in reflux, (II) 10% Pd/C,
EtOH, hydrazine, 60 °C, Ny, 6 h, (Ill) EtOH, CF3COOH, aldehyde (salicylaldehyde, 5-bromosalicylaldehyde, 3,5-diiodosalicylaldehyde) and b) the chemical structures of the final compounds.
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2.2.3. 3-(Imine-(3,5-dijodo-2-hydroxyphenyl) )-N-hexyl-1,8-
naphthalimide 1c

Orange solid; Yield = 53%; Ty = 195 °C, 'TH NMR (400 MHz, CDCl5) &
14.19 (s, 1H), 8.70 (s, 1H), 8.59 (dd, ] = 7.2, 0.9 Hz, 1H), 8.55 (d, ] =
2.0 Hz, 1H), 8.22 (d,] = 7.7 Hz, 1H), 8.15 (d, ] = 2.0 Hz, 1H), 8.05 (d,
J = 1.9 Hz, 1H), 7.84-7.78 (m, 1H), 7.75 (d, ] = 2.0 Hz, 1H), 4.18 (m,
2H), 1.73 (m, 2H), 1.47-1.31 (m, 6H), 0.92 (t,] = 7.0 Hz, 3H). '>C NMR
(101 MHz, CDCl3) 6 163.74, 163.55, 161.74, 160.07, 149.88, 145.27,
140.96, 133.82, 132.44, 131.25, 128.04, 127.15, 126.17, 124.51, 123.45,
122.90, 120.43, 87.30, 80.43, 40.70, 31.54, 28.06, 26.78, 22.57, 14.06.
FTIR (KBr, v, cm™!): 3448 (N-H---O, hydrogen bonding), 3139-2992
(C—H aromatic); 2990-2780 (C—H aliphatic); 1699 and 1657 (C=0
imide); 1600 (C=C); 1578 (C=C aromatic); 1332 (C—N, aromatic
amines). Anal. Calcd for CsH;3I;N503 (652.26 g/mol): C(46.03%) H
(3.40%) N(4.29%); found: C(45.93%) H(3.32%) N(4.07%).

2.24. 3-(Imine-(2-hydroxyphenyl) )-N-2,4-dimetylophenyl-1,8-
naphthalimide 2a

Yellow solid; Yield = 76%; Ty = 270 °C, 'TH NMR (400 MHz, DMSO) &
12.71 (s, 1H),9.26 (s, 1H), 8.58 (d,] = 1.7 Hz, 1H), 8.53 (m, 2H), 8.49 (d,
J=72Hz,1H),7.95 (t,] = 7.8 Hz, 1H), 7.80 (d,] = 6.8 Hz, 1H), 7.48 (t,
J=7.8Hz,1H),7.22 (m, 2H), 7.15 (d,] = 8.1 Hz, 1H), 7.04 (m, 2H), 2.38
(s, 3H), 2.05 (s, 3H). *C NMR (101 MHz, DMSO) & 165.73, 163.74,
163.54, 160.76, 147.56, 138.34, 135.73, 135.00, 134.41, 133.12, 133.05,
132.92, 131.52, 130.92, 129.31, 128.48, 127.73, 127.10, 126.37, 125.21,
124.29, 122.94, 119.98, 119.87, 117.22, 21.18, 17.49. FTIR (KBr, v,
cm™"): 3440 (N-H-+-0, hydrogen bonding), 3139-2992 (C—H aromatic);
2990-2780 (C—H aliphatic); 1703 and 1668 (C=O0 imide); 1611 (C=
C); 1574 (C=C aromiatic); 1337 (C—N, aromatic amines). Anal. Calcd
for C,7H,oN,03 (420.46 g/mol): C(77.13%) H(4.79%) N(6.66%); found:
C(77.03%) H(4.87%) N(6.71%).

2.2.5. 3-(Imine-(3,5-dijodo-2-hydroxyphenyl) )-N-2,4-dimetylophenyl-
1,8-naphthalimide 2c

Yellow solid; Yield = 59%; Ty = 215 °C, 'TH NMR (400 MHz, CDCl5) 6
14.22 (s, 1H), 8.74 (s, 1H), 8.66 (d, ] = 6.9 Hz, 1H), 8.63 (d,] = 2.0 Hz,
1H), 8.32 (d, ] = 8.1 Hz, 1H), 8.17 (dd, J = 10.7, 1.9 Hz, 2H), 7.87 (t,
J = 7.8 Hz, 1H), 7.77 (d, ] = 1.7 Hz, 1H), 7.24 (s, 1H), 7.19 (d, ] =
8.1 Hz, 1H), 7.11 (d, J = 7.9 Hz, 1H), 2.42 (s, 3H), 2.16 (s, 3H). 1°C
NMR (101 MHz, CDCl3) 6 163.66, 163.45, 162.07, 160.11, 149.95,
145.51, 141.05, 139.10, 135.37, 134.23, 132.70, 131.94, 131.72, 131.70,
128.17,128.12, 127.93, 127.69, 126.55, 124.65, 123.98, 123.01, 12047,
87.28,80.42, 21.25, 17.56. FTIR (KBr, v, cm™'): 3440 (N-H--O, hydrogen
bonding), 3139-2992 (C—H aromatic); 2990-2780 (C—H aliphatic);
1669 and 1656 (C=0 imide); 1613 (C=C); 1571 (C=C aromatic);
1333 (C—N, aromatic amines). Anal. Calcd for C,;H;gl;N503
(672.25 g/mol): C(48.24%) H(2.70%) N(4.17%); found: C(48.15%) H
(2.84%) N(3.98%).

2.2.6. 3-(Imine-(2-hydroxyphenyl) )-N-benzyl-1,8-naphthalimide 3a

Yellow solid; Yield = 77%; Tm = 217 °C, 'TH NMR (400 MHz,
DMSO) 6 12.70 (s, 1H), 9.23 (s, 1H), 8.57 (s, 1H), 8.52-8.45 (m,
3H), 7.90 (t,] = 7.4 Hz, 1H), 7.78 (d, ] = 7.8 Hz, 1H), 7.48 (t,] =
7.8 Hz, 1H), 7.38 (s, 2H), 7.32 (t,] = 7.4 Hz, 2H), 7.25 (m, 1H), 7.03
(m, 2H), 5.28 (s, 2H). 1*C NMR (101 MHz, DMSO) 6 165.68, 163.86,
163.71, 160.76, 147.50, 137.76, 134.97, 134.40, 133.10, 132.89,
130.97, 128.86, 128.47, 128.03, 127.86, 127.57, 126.63, 126.35,
125.28, 123.83, 122.50, 119.95, 119.87, 117.21, 43.48. FTIR (KBr, v,
cm™'): 3435 (N-H---0, hydrogen bonding), 3139-2992 (C—H aro-
matic); 2990-2780 (C—H aliphatic); 1703 and 1664 (C=O0 imide);
1609 (C=C); 1572 (C=C aromatic); 1330 (C—N, aromatic amines).
Anal. Calcd for Co6H18N203 (406.43 g/mol): C(76.83%) H(4.46%) N
(6.89%); found: C(76.94%) H(4.57%) N(6.86%).

2.2.7. 3-(Imine-(5-bromo-2-hydroxyphenyl) )-N-benzyl-1,8-
naphthalimide 3b

Yellow solid; Yield = 68%; Ty = 263 °C, 'TH NMR (400 MHz, DMSO) 6
12.59 (s, 1H), 9.20 (s, 1H), 8.57 (s, 1H), 8.52-8.45 (m, 3H), 7.99 (s, 1H),
7.92 (t,] =7.7Hz,1H), 7.61 (d,] = 8.8 Hz, 1H), 7.39 (d,] = 7.5 Hz, 2H),
7.32 (t,] = 7.1 Hz, 2H), 7.25 (m, 1H), 7.01 (d, ] = 8.8 Hz, 1H), 5.29 (s,
2H). 3C NMR (101 MHz, DMSO) & 163.85, 163.80, 163.73, 159.70,
147.43,137.75, 136.55, 135.02, 134.26, 132.84, 131.09, 128.86, 128.53,
128.02, 127.57, 126.82, 126.69, 125.08, 123.91, 122.56, 122.02, 119.68,
110.71, 43.49. FTIR (KBr, v, cm™'): 3440 (N-H---O, hydrogen bonding),
3139-2992 (C—H aromatic); 2990-2780 (C—H aliphatic); 1698 and
1662 (C=0 imide); 1609 (C=C); 1572 (C=C aromatic); 1330 (C—N,
aromatic amines). Anal. Calcd for C,gH;7BrN,03 (485.33 g/mol): C
(64.34%) H(3.53%) N(5.77%); found: C(64.28%) H(3.59%) N(5.82%).

2.3. Study of the optical properties

The optical properties were tested in solvents of different polarities.
For this purpose, weights (1 mg) of each compound were prepared and
dissolved in an appropriate amount of DMSO to obtain solutions with a
concentration of 1 mM. Then 0.1 mL of the compound solution was
metered into volumetric flasks (10 mL), which were then filled up to
the mark with the appropriate solvent. The resulting solutions were
mixed and left for 2 h, after which the absorption and emission proper-
ties of each solution were measured.

24. Testing for chelating properties

The chelating properties were tested in equimolar ligand-metal ratio
in various solvents (acetone, acetonitryle and PBS/acetone). Chloride
cations such as AI*™, Ba?™, Co®*, Cr**,cu?™, Fe?™, Fe**, Mn? ™", Ni? ™,
Pb% ™, Sr?* and Zn?T as well as octane cobalt were used in the study.
1 mM salt solutions were prepared before use in the following way:
the appropriate weights of salt were transferred quantitatively into a
10 mL volumetric flask, which were then filled up to the mark with dis-
tilled water. Next, the compounds were weighed (1 mg) and dissolved
in DMSO to obtain a concentration of 1 mM. Then, 0.1 mL of the appro-
priate cation solution and 0.1 mL of the tested compound solution were
added into a 10 mL volumetric flask. The flask was supplemented to the
mark with a suitable solvent and mixed. Final concentration of com-
pound as well as metal in prepared sample was 10 uM. The solution
was left for 2 h, after which the absorbance and emission was measured.

2.5. Cell culture

The human colon carcinoma cell line HCT 116 was purchased from
the American Type Culture Collection. The monolayer culture was
grown in 75 cm? flasks (Nunc) in Dulbecco's modified Eagle's medium,
which was supplemented with 12% heat-inactivated fetal bovine serum
and a mixture of standard antibiotics — 1% v/v of streptomycin and pen-
icillin (all of the reagents were purchased from Sigma-Aldrich). The cells
were cultured under standard conditions at 37 °C in a humidified atmo-
sphere at 5% CO, and passaged every three days. The cells were rou-
tinely tested for Mycoplasma contamination using the PCR technique
before the experiments were started.

2.6. Cytotoxicity studies

The HCT 116 cells were seeded on 96-well transparent plates (Nunc)
at a density of 5 - 10 cells per well and incubated under standard con-
ditions for 24 h. Then, the growth medium was replaced with the me-
dium containing the tested compounds at varying concentrations.
Stock solutions of the compounds being investigated were prepared in
sterile DMSO. The final concentration of DMSO in the medium did not
exceed 0.2%. After a 72-h incubation with the tested compounds, the
media solutions were replaced with 100 uL DMEM (without serum
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and phenol red) and 20 pL of CellTiter 96® AQueous One Solution re-
agent - MTS (Promega) and incubated for 1 h at 37 °C. The absorbance
of the samples was measured at 490 nm using a Synergy 4 multi-plate
reader (BioTek). The results are expressed as the percentage of the con-
trol (untreated cells) and were calculated as the inhibitory concentra-
tion (ICsp) values using GraphPad Prism 7. A compound was tested in
triplicate in a single experiment with each experiment being repeated
at least three times.

2.7. The cellular staining

The HCT 116 cells were seeded onto coverslips at a density of 2 - 10%
cells/slide and incubated at 37 °C for 48 h. Then, the medium was re-
placed with a solution of the tested amines and azomethines at a con-
centration of 25 uM and the cells were further incubated for 2 h under
standard conditions, after which the cells were washed three times
with PBS and mounted with a serum-free medium without phenol
red. The results of the cellular staining were observed using Zeiss Axio
Observer.Z1 inverted fluorescence microscope equipped with an
AxioCam MRm camera.

2.8. Colocalization studies

The colocalization studies with some modifications were performed
as described previously in [36]. Briefly, HCT 116 cells were seeded onto
coverslips at a density of 2 - 10% cells/slide and incubated at 37 °C for
48 h. Then, the medium was replaced with a solution to which com-
pound 1b (25 uM) was added and the cells were further incubated for
2 h. After incubation, the cells were rinsed with PBS and the staining
procedures were performed according to the manufacturer's protocols.
In short, a medium (without serum and phenol red) that contained
MitoTracker® Orange (100 nM, 30 min incubation, Molecular Probes),
ER-Tracker™ Red BODIPY® TR Glibenclamide (1 pM, 30 min incubation,
Molecular Probes) or LysoTracker® Red DND-99 (500 nM, 1 h incuba-
tion, Molecular Probes) were added. After staining with organelle-
specific dyes, the cells were washed three times with PBS, then fixed
with 3.7% paraformaldehyde for 10 min and mounted with
fluoromount-G (Sigma-Aldrich). The subcellular localization was ob-
served using a Nikon Eclipse Ni-U microscope equipped with a Nikon
Digital DS-Fi1-U3 camera. The fluorescence images were analyzed and
processed using Image | software 1.41 (Wayne Rasband, National Insti-
tutes of Health, Bethesda, MD, USA). The PCC and MOC were calculated
using the plugin “JACoP” in the Image ] software.

3. Discussion of results
3.1. Synthesizing and characterizing compounds

The amines (1-3) were obtained in a two-step reaction starting with
the commercially available 3-nitro-1,8-naphthalic anhydride as shown
in Fig. 1 and described in supplementary materials (SM) [31,33]. Then,
the obtained amines were condensed with commercially available alde-
hydes such as salicylaldehyde, 5-bromosalicylaldehyde and 3,5-
diiodosalicylaldehyde to produce the imines Fig. 1. 'TH NMR, 13C NMR
and FT-IR studies and an elemental analysis confirmed the chemical
structure and purity of the final compounds. In addition, the COSY and
HMQC correlation spectra were determined for 1b. Based on the
HMQC spectrum (Fig. S2b), the characteristic shifts that indicate the
enol-imine form were observed. They included a signal above
12.5 ppm in the form of a singlet that was uncorrelated with carbon
and a proton from the imine bond in the form of a singlet (about
9 ppm) that was correlated with carbon (about 160 ppm). Moreover,
the COSY spectrum (Fig. S2a) showed that both protons were actually
isolated. The HMQC spectrum revealed an additional carbon signal at
39.34 ppm because the hexylamine was covered by a solvent signal

(Fig. S2b). Therefore for derivatives 1a and 1b in the aliphatic part sig-
nals for five carbons visible in the 1D spectrum was described.

3.2. Spectroscopic studies

UV-Vis and photoluminescence (PL) were measured in the solvents
that had various polarities such as chloroform (CHCl3, € = 4.89), ace-
tone (AC, € = 20.56), ethanol (EtOH, ¢ = 24.55), methanol (MeOH,
£ = 32.66) and acetonitrile (ACN, € = 35.94). The obtained spectro-
scopic data are listed in Table 1, whereas in Fig. S8, the UV-Vis and PL
spectra of all of the compounds are presented. In the electronic absorp-
tion spectra of the tested compounds (amines and azomethines), a band
that is characteristic of the n-m* transitions in the imide unit at
318-350 nm [30,31] was observed in all of the solvents (Fig. S8). In ad-
dition, in the UV-Vis spectra of the 3-amino-1,8-naphthalimides, a band
in the range of 350 to 470 nm was observed [36].

The largest changes in the absorption spectra were observed for
compounds 1c and 2¢, which contained two electron-withdrawing sub-
stituents (-1) (Fig. S8). This may be due to the significant influence of
these substituents on the change of keto-enol tautomeric equilibrium
(Fig. 2) [38], which was not clearly visible in the other compounds.

All of the synthesized compounds were luminescent in the investi-
gated solvents and they emitted light that was the maximum PL band
(Nem), Which was located in the range of 507-550 nm. The calculated
Stokes shift for the amines (3107-5281 cm~ ") was smaller than for
the azomethines (9804-2354 cm™!). The fluorescence lifetime (T)
and fluorescence quantum yield (&) of all of the compounds were esti-
mated in two solvents (CH3Cl and EtOH) (Table 1, Figs. S8, S9 and S10).
Slight differences in the times of PL life were noticeable. The lifetime of
all of the molecules in chloroform was about 19-20 ns while it was
shorter in ethanol (15-20 ns). By contrast, there were significant differ-
ences in the PL quantum yield in both solvents. The highest & was deter-
mined for 3-amino-N-hexyl-1,8-naphtalimide (1). Replacing the hexyl
unit (1) with a diaminophenyl (2) or benzyl (3) substituent caused a de-
crease of @ in both solvents. The azomethines had significantly lower
values of & compared to the amines, which was associated with occur-
rence of the photoinduced electron transfer (PET) [39,40]. The existence
of the PET phenomenon was also confirmed by the effect of the addition
of the base (triethyloamine - Et3N) and acid (trifluoroacetic acid - TFA)
on the optical properties of the imines in the chloroform solution. This
type of effect is associated with the protonation of the imine bond by
acid, which inhibits the photoinduced electron transfer process, thereby
causing an increase in the emission intensity (Fig. S11).

3.2.1. Chelating properties of the compounds in various solvents

The chelating properties of compounds 1a, 1b and 1c of various cat-
ions (AT, Ba®™, Co®™, Cr ™, Cu?*, Fe?*, Fe*™, Mn?*, Ni?*, Pb%*, Sr2*
and Zn?") were investigated in acetone (AC), acetonitrile (ACN) and
PBS/AC solutions (80%, 0.1 M PBS). Imine concentrations that were
equal to 10 um and an equimolar amount of each ion were investigated.
The complexing properties of the compounds in acetone are shown in

D R
) N /O 0 N e}
1 —
’H\ N /H“
N~ (o) N O
| R? = | R?
R’ é1
Enol-imine Keto-enamine

Fig. 2. The enol-ketone tautomeric equilibrium of the 1,8-naphthalimide derivatives.
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Fig. 3. Changes in the absorption (upper part of the figure) and emission (excitation by 340 nm, lower part of the figure) relative to the ions (10 um) that were in acetone under identical
measuring conditions for the tested compounds (10 um) for a) 1a, b) 1b, ¢) 1c. On the bottom photos under a UV Lamp at 366 nm were presented.

Fig. 3. In the UV-Vis spectra of complex 1a and 1b with Fe**, there was a
new intense band, which was located at 400-475 nm contrary to 1c. Ad-
ditionally, for compounds 1a and 1b, there was an increase in the PL in-
tensity in the presence of Fe** and a slight increase in the emission for
the solution with Cr>™ There was an increase in the emissions of 1c in
the presence of most of the metals, probably due to the predominance
of the keto-enamine form [33]. The “turn on” fluorescent properties of
all of the compounds were connected with the inhibition of the PET
[41-44].1t was found that the complexing properties of the investigated
molecules in acetonitrile and acetone were different. In acetonitrile,
compound 1a mainly complexed Fe**, AP+ and Cr** ions, while com-
pounds 1b and 1c was able to complex most of the cations (Fig. S12).

Thus, in acetonitrile, the keto-enamine form was dominant for 1b
and 1c. Next, the metals (AI*™, Cr>* and Fe?™) for a system were ti-
trated with compound 1a in acetonitrile. The emission changes that
were the result of the metal titration are presented in Fig. S13. The
curves that were plotted showed that the AI**™ and Fe>* ions formed a
complex more easily compared to the Cr>* ions. In the next stage, the
complexing properties in the PBS/AC mixture (80%, 0.1 M PBS) were
studied. The changes in the presence of copper ions for all of the com-
pounds are presented (Fig. S14). Fluorescence was extinguished,
which may have been associated with the formation of a complex
followed by azomethine hydrolysis [45].

3.2.2. Influence of protic solvents on spectroscopic properties

The performed spectroscopic studies in various solvents (Table 1),
showed relatively interesting properties of compounds in protic sol-
vents (EtOH, MeOH). First, amines in ethanol had higher quantum
yields than analogous imines. Second, the quantum yield in EtOH for im-
ines 1a, 1b, 1c increased with the presence of -B or -I in the compound.
The regularities described above reflect very well the collated PL

emission spectra and photographs under the UV lamp presented in
Fig. S8 in SI. Therefore, it was decided to perform additional studies
aimed at explaining the importance of protic solvents (H,0, EtOH or
MeOH) on the spectroscopic properties of compounds. The changes in
emissions of aminonaphthalimides due to the intermolecular
hydrogen-bonding with protic solvents were proved [37,46,47]. How-
ever, the influence of protic solvents on the emission properties of im-
ines is different from that of amines (Table 1, and Fig. S8). Therefore,
in the next stage it was decided to perform photophysical tests of com-
pounds (amines and imines) in a binary mixture of solvents (AC/H,0
and EtOH/H,0) with a different content of water fraction [27,28]. Anal-
ysis of such studies will allow obtaining information related to the im-
pact of protic solvent (water) on spectroscopic properties as well as
allow studying the photophysical properties of the aggregates formed.
First, such tests were performed for both the amines and azomethines
in a mixture of acetone with 0.1 M PBS.

The observed changes in emissions because of an increased water
content were different for the amines and azomethines. These effects
were showed on the superimposed emission spectra (Fig. S15) to deter-
mine spectroscopic changes associated with aggregation of compounds.
If, as the water content in the system increases, the emission intensity
also increases as well as the maximum emission undergoes a
bathochromic shift, due to aggregation induced emission (AIE) phe-
nomena. The emission intensity decrease under these conditions, can
be caused by the aggregation quenching process [28]. All of the amines
(1-3) exhibited aggregation-caused quenching (ACQ), while in the case
of imines, there was an increase in emission intensity followed by its
quenching. In addition, it was noted that the emission changes for the
compounds (1a, 2a, 3a) in the tested system together with the increase
of the water content was the same, which means that the substituent in
the imide part does not effect on the spectroscopic properties in the
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Table 1

The UV-Vis and PL spectroscopic parameters of amines and azomethines.
Medium?® Code UV-Vis PL Code UV-Vis PL

Nmax [nmM] Nem Stokes shift D [%] T [ns] Nmax [nm] Nem Stokes shift D [%] T
[nm] [em™']P [nm] [em™']P [ns]

CHCl3 1 340, 407 522 5413 61.43 21.12 1c 318,373%" 528 12,507 3.09 2091
AC 340, 432 508 3463 - - 330, 373" 511 10,734 - -
EtOH 340, 423 546 5326 86.98 17.28 340, 440 546 4997 26.60 17.33
MeOH 340, 428 549 5149 - - 341,434 550 4860 - -
ACN 340, 416 511 4469 - - 340, 376™" 529 10,508 - -
CHCl3 2 340, 406 520 5400 45.65 20.68 2a 340, 370°" 524 10,328 13.65 20.09
AC 340, 438 507 3107 - - 340, 370" 512 9881 - -
EtOH 340, 423 545 5292 63.98 17.56 340, 370%" 545 11,063 1.39 1547
MeOH 340, 431 549 4987 - - 340, 370" 555 11,394 - -
ACN 340, 417 510 4373 - - 340, 370" 515 9994 - -
CHCl5 3 340, 407 522 5413 40.30 19.86 2c 318, 373" 522 12,289 1.62 19.67
AC 340, 423 511 4071 - - 330, 373" 509 10,657 - -
EtOH 340, 425 546 5214 34.82 16.96 340, 440 553 4644 5.26 16.84
MeOH 340, 428 553 5281 - - 341, 434 547 4760 - -
ACN 340, 417 512 4450 - - 314, 373" 513 12,354 - -
CHCl; 1a 340, 373" 520 10,181 13.09 20.78 3a 340, 372" 526 10,400 5.74 20.34
AC 340, 373" 510 9804 - - 340, 372%" 512 9881 - -
EtOH 340, 373" 548 11,164 2.01 17.03 340, 372" 548 11,164 331 20.61
MeOH 340, 373" 552 11,296 - - 340, 372" 555 11,394 - -
ACN 340, 373" 510 9804 - - 340, 372" 514 9957 - -
CHCl; 1b 340, 370°" 523 10,291 5.25 20.79 3b 310, 340, 368°" 528 10,472 13.11 21.34
AC 340, 370°" 509 9765 - - 340, 368" 515 9994 - -
EtOH 310, 340, 370%" 547 11,130 21.03 17.52 340, 368" 548 11,164 1.55 17.48
MeOH 310, 340, 370°" 550 11,230 - - 310, 340, 368°" 550 11,230 - -
ACN 310, 340, 370%" 510 9804 - - 310, 340, 368°" 515 9994 - -

sh _ shoulder.

¢ Dielectric constant of the solvents: CHCl; (4.89), AC (20.56), EtOH (24.55), MeOH (32.66), ACN (35.94).
b The Stokes shifts were calculated according to the equation Av = (1/Nps - 1/ Nemn) - 107 [em™!].
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Fig. 4. a) The proposed mechanism for the emission increase in the binary acetone-water system; b) superimposed graphs of the change in PL intensity because of the increasing water
content in the system for 1a, 2a and 3a, c¢) superimposed graphs of the change in emission intensity because of the increasing water content in the system for 1a, 1b and 1c.
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presence of a protic solvent (Fig. 4b). Nevertheless, large differences
were seen when the substituents in the imine part were changed
(Fig. 4c) as was noted for compounds 1a, 1b, 1c. These changes can be
explained by the formation of an adduct with water. The electron-
withdrawing groups (-Br, -I) stabilize the of the keto-eneamine tauto-
mer by facilitating the solvent-assisted excited or ground state intramo-
lecular proton transfer (ESIPT or GSIPT) - which increase the emission
intensity [48,49]. It is visible in the case of the compounds with two io-
dine atoms (1cand 2c in Fig. S15) in the system with 10% water content.
Increasing the water content in the system promotes aggregation of
compounds and with water content above 50%, the fluorescence
quenching is visible for all compounds. Then, tests were performed in
a second system (EtOH/H,0), which allows checking the complexing
properties of compound 1a with respect to iron in ethanol as well as
the study of water influence on the forming complex. According to the
results presented in Fig. 4, compound 1a does not exhibit such a strong
solvent-assisted intramolecular proton transfer as the other analogues.
Therefore, it is suitable for these tests in a system with EtOH. In Fig. 5
the changes in emissions caused by the increased water content in the
system for the compound itself (Fig. 5a) and the compound with the ad-
dition of Fe*™ (Fig. 5b) were summarized.

Moreover, the observed changes in the PL intensity depending on
the water content in both cases were compiled in Fig. 5c. The addition
of iron ions caused an increase in the PL intensity of the system, which
indicates also the formation of the complex in such conditions. The ob-
tained results show AIE of both the compound itself and its iron com-
plex. This is demonstrated by the increase in emission intensity and
the bathochromic shift in the maximum emission (from 550 to
565 nm) in a system where the water content does not exceed 50%.
However, a higher water content in a system reduced the fluorescence
intensity in both cases. As was mentioned earlier, the observed PL
quenching may have been because of azomethine hydrolysis [50] and/
or aggregation-caused quenching (ACQ).

3.3. Biological properties

3.3.1. Cytotoxicity

The promising fluorescent dyes were characterized by a large Stokes
shift, which minimized the self-quenching effect and enabled one exci-
tation source to be used with several fluorescence emission channels in
order to avoid bleed-through or crosstalk as a result of spectral overlap-
ping. In addition, the strong fluorescence of potential dyes with low
photobleaching and pharmacokinetic properties such as protein bond-
ing and lipophilicity are decisive for obtaining high-quality images and
therefore are valuable in the field of bioimaging application [51]. The
most important aspect is the low toxicity of the fluorescent dyes that
can be used in biological systems. For this reason, we determined the

500w (%, v/¥) W (%, v/v)

biological activity of all of the tested amines and azomethines using a
colorimetric MTS assay. Considering the potential application of the
synthesized compounds in the field of the molecular imaging of cancer,
the human colon cancer cell line was used in the tests. The cancer cells
were incubated with the tested compounds at various concentrations
for 72 h. The results are presented in Table 2.

In general, the substrates — amines did not affect the viability of the
cells. A similar behavior was observed for almost of all of the tested
azomethines, which were inactive at a concentration of 25 pM. The ex-
ceptions were 3a and 3b, which were azomethines that were based on
the benzylamine moiety, which had a negligible toxic effect on the
HCT 116 cells. However, this concentration was acceptable for further
microscopic experiments because the tested derivatives reached a
strong fluorescence after about a two-hour incubation with the cells.

3.3.2. Cellular imaging

In the next step, we explored the potential of all of the obtained
azomethines with their substrates to be fluorescent dyes for bioimaging.
These compounds can effectively penetrate the cell membrane after a
two-hour incubation, thereby achieving full fluorescence in the cells,
which enables them to be visualized using fluorescence microscopy
techniques.

The absorption properties of the group of derivatives described
above enabled them to be excited using a DAPI or UV-2A filter (excita-
tion 330-380 nm) wavelength. The results are presented as fluores-
cence images for the azomethine group that was based on the
hexylamine moiety in Fig. 6 and in Fig. S16 in the Supporting Materials
for the rest of tested derivatives. In general, a very high fluorescence sig-
nal was observed for hexylamine (1) and the azomethines with phenol
(1a) and 5-bromophenol moieties (1b). The opposite observation was
recorded for the 3,5-diiodine derivative (1c) in this group, which was
characterized by a very low fluorescence signal in the cells. These results
were only partially consistent with the spectroscopic data, in which the
highest fluorescence quantum yields were found for hexylamine (87%)
and the lowest for compound 1a (2%) in a polar solvent. An explanation
for this phenomenon could be the fact that compounds 1a and 1b can
probably hydrolyze to hexylamine in biological systems.

The weak fluorescence signal and low quality of the micrographs for
the other amines (2, 3) and their corresponding azomethines (2a, 2c
and 3a, 3b) was observed. The overall low effect was due to several fac-
tors. One reason is that the compounds that were based on the 2,4-
dimethylaniline and benzylamine moieties were characterized by low
fluorescence quantum yields in both the polar and non-polar solvents.
Additionally, the quenching of the fluorescence of iodo-derivatives
such as 1c or 2¢ might have been associated with the high aggregation
process, which was caused by a low solubility and a very high lipophilic-
ity (Log P values are presented in Table 2). Moreover, the presence of
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Fig. 5. The photoluminescence (PL) properties of compound 1a (10 pM): (a) in a binary mixture of PBS/EtOH (fw: 0,1 M PBS, v/v) with an increasing water (PBS) content (fw), (b) after
adding of Fe** (10 uM) to the PBS/EtOH and (c) N, intensity versus the water content (fw) of the solvent mixture with and without Fe3+.
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Table 2

Cytotoxicity of the tested compounds against the human colon cancer cell line (HCT 116).
Compounds I1Csp [WM] Log P
1 >25 2.56 + 0.85
2 >25 2.58 + 0.85
3 >25 1.68 + 0.86
la >25 472 + 093
1b >25 592 + 0.97
1c >25 7.26 + 1.02
2a >25 4.73 £ 0.93
2c >25 7.27 + 1.02
3a 24.76 + 2.86 3.84 + 0.94
3b 23.86 + 1.03 5.04 + 0.98

two electron-withdrawing substituents (-I) in the C-3 and C-5-posi-
tions, which produced a “heavy atom effect” may have enhanced the
probability intersystem crossing, which affected the quenching of the
fluorescence and this type of behavior in a biological system [52,53].
The preliminary observations suggested that the azomethine deriva-
tives had a tendency to accumulate in the membrane-bound organelles.
To evaluate this hypothesis, we determined the subcellular localization
of the tested compounds in the human colon cancer cells. The
colocalization experiments were performed using the commercially
available specific trackers for staining mitochondria (MitoTracker), ly-
sosomes (LysoTracker) and endoplasmic reticulum (ERTracker). For
this study, 1b derivative was selected because it had one of the highest
fluorescence quantum yields and strong fluorescence signal in living
cells of all of the tested derivatives. As is presented in Fig. 7, compound
1b had a tendency to penetrate the mitochondria and endoplasmic re-
ticulum. To confirm the visual data, a quantitative assessment was per-
formed and the Pearson correlation coefficient (PCC) and Mander's
overlap coefficient (MOC) were calculated for all of the merged images
using Image] software [54]. The calculated PCC and MOC for
colocalization of the mitochondria were 0.91 and 0.87, respectively.
Similar values of 0.94 for the PCC and 0.95 for the MOC were calculated
for the overlapping images of the ER and azomethine. These high values
confirmed the very strong degree of the accumulation of compound 1b

25 um

in these organelles [55]. Due to its more lipophilic character, compound
1b may have a stronger tendency to accumulate in the ER structure,
which is also in agreement with the literature data [56]. Another possi-
ble explanation for azomethines targeting mitochondria-ER is the close
contact between these organelles, which form an organized structural
and functional network that is mediated by the mitochondrial proteins
and mitochondria-related membranes (MAMs) [57]. On the other hand,
1b derivative had a poor affinity to lysosomes (both correlation coeffi-
cients were less than 0.4), which indicates that weak bases such as
azomethines are not able to effectively diffuse through the lysosomal bi-
layer and enter the acidic compartments.

3.4. Effect of the keto-enol equilibrium on the hydrolysis of imines

Increased fluorescence after chelating of trivalent metals (A Fe**
or Cr>*) by naphthalimide derivatives indicates the mechanism of PET
inhibition [10,58-60]. Nevertheless, both amines and azomethines
were used for cell imaging. Especially derivatives with substituted n-
hexyl were very effective. Therefore, another mechanism, e.g. associ-
ated with naphthalimide hydrolysis, is more appropriate [50]. It follows
that more important, than the complexing properties of imines, is the
reported occurrence of imine hydrolysis [33,36,45]. Cell imaging by for-
mation of a complex with metal (PET inhibition) is not excluded, which
can explain the brighter points in the Fig. 6 for compound 1a and 1b.
Nevertheless, in the context of the results presented in this work, it is
appropriate to consider the effect of the keto-enol equilibrium on the
hydrolysis of imines. It should be emphasized that the ability of the
imine to chelating metals in the presence of water increases the degree
of hydrolysis. An example could be the reports of the imine receptors
first rapidly coordinating with Au®*+, and then hydrolyzing to the corre-
sponding products because of the presence of water [50]. The keto-enol
tautomeric equilibrium can be influenced by various factors such as the
solvent that is used, the temperature or the substituents [61-63]. The
UV-Vis spectra that were registered for the various solvents (Fig. S8)
showed significant changes in the tautometric equilibrium. The keto-
enol equilibrium seemed to be crucial for the imine hydrolysis process,
mainly because of the presence of the electron-withdrawing

25 um

Fig. 6. Fluorescence images of the HCT 116 cells that had been incubated with the compounds at a 25 pM concentration: hexylamine (1) and its corresponding azomethines (1a, 1b, 1c) for

2 h at 37 °C. Scale bars indicate 25 pm.
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MitoTracker

LysoTracker

ERTracker

Fig. 7. Fluorescence images of the HCT 116 cells that had been stained with compound 1b, azomethine, (25 uM) and organelle-specific trackers. Panels I and II present the fluorescence of
compound 1b or a tracker alone, while panel III presents the merged fluorescence images. Scale bars indicate 25 pm.

substituents. The aggregation properties of stable 3-ketoenamines and
the hydrolysis of azomethines were discussed in our previous work,
where the greater stability of the keto-enamine form in the aquatic en-
vironment was demonstrated in our research. These studies showed
that the photophysical changes of the imines with an increase of the
water content in a system were associated with the hydrolysis process
[33]. In these reports, both amines and imines were able to image cell
organelles. Amines with the n-hexyl group had the best emission prop-
erties in cell imaging. Imines 1a and 1b also imaged the intracellular or-
ganelles well, but 1c was not usable. Therefore, the electron-
withdrawing groups (-1) shift the equilibrium to ketonimine, which
forms a stable adduct with the hydroxyl derivatives or a complex with
cations more easily (Fig. 8) as well as not subject to hydrolysis in this
form.

Compound 1b may diffuse into the interior of a cell better compared
to an amine. At the target location, the environment can affect the keto-
enol equilibrium and the enol-imine form can be hydrolyzed to the
amine. In turn, compound 1a can be hydrolyzed more easily before en-
tering the cell, and therefore, the result in imaging is comparable to the
amine itself. The high impact of the environment on the properties of

compound 1b was demonstrated by a change in its complexing proper-
ties, i.e. it complexed with two cations in acetone (Fig. 3), while most
cations were complexed in acetonitrile (Fig. S12).

4. Conclusions

A series of new N-substituted-1,8-naphthalimide derivatives that
have an amine group or imine linkage were prepared. The optical and
biological properties of the compounds as well as the ability of selected
molecules to complex metal were studied. The synthesized 3-amino-
1,8-naphalimides and final naphthalimide-azomethines were
photoluminescent in a solution and emitted a green or yellow light.
The PL quantum yield was dependent on subtle chemical effects within
the tested molecular structure, in particular, imide nitrogen and the ar-
omatic unit substitution pattern of the 1,8-naphthalimide core as well
as the solvent type being tested. The naphthalimide-azomethines that
had substituted with bromine and iodine atoms had the highest PL &
of about 20% when tested in in ethanol. The complexing ability of the
compounds that were obtained from 3-amino-N-(hexyl)-1,8-
naphalimide and salicylaldehyde (1a) and 5-bromosalicylaldehyde
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Fig. 8. The proposed mechanism of the influence of the keto-enol equilibrium on the process of the hydrolysis of imines.

(1b) showed a positive potential vs, Fe3* when tested in acetone. The
lack of biological activity of the tested series makes these compounds
an interesting target as potential cellular imaging dyes. The importance
of azomethine to amine hydrolysis, which is responsible for imaging the
internal organelles (mitochondria and intraplasmic reticulum) was also
demonstrated. The hydrolysis process was affected by the keto-enol
equilibrium, while the electron-withdrawing substituents (-I) shifted
the equilibrium to keto-enamine. This effect reduced the degree of the
hydrolysis. Therefore, compounds 1c and 2c were not efficient in cell
imaging. The n-hexyl-naphthalene imide that had been substituted
with a bromine atom (1b) or an analogue with an unsubstituted phenyl
ring (1a) had the most advantageous cellular imaging behavior.
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