8 research outputs found

    Two-year clinical evaluation of three adhesive systems in non-carious cervical lesions

    Get PDF
    OBJECTIVES: Adhesive systems are continuously being introduced to Dentistry, unfortunately often without sufficient clinical validation. The aim of this study was to evaluate the clinical performance of cervical restorations done with three different adhesive systems. MATERIAL AND METHODS: 158 non-carious cervical lesions of 23 patients were restored with a nanofilled composite resin (Filtek Supreme, 3M/ESPE) combined with Single Bond (3M/ESPE, group SI), Clearfil SE (Kuraray Medical Inc., group CL) and Xeno III (De Trey Dentsply, group XE). In groups SI-B, CL-B and XE-B, the outer surface of the sclerotic dentin was removed by roughening with a diamond bur before application of the respective adhesive systems. In groups CL-BP and XE-BP, after removal of the outer surface of the sclerotic dentin with the bur, the remaining dentin was etched with 37% phosphoric acid and the self-etch adhesive systems Clearfil SE and Xeno III were applied, respectively. Lesions were evaluated at baseline, and restorations after 3 months, 1 year and 2 years using modified USPHS criteria. RESULTS: After 2 years, no significant difference was found between the retention rates of the groups (p >0.05). Although groups CL and SI showed significantly better marginal adaptation than group XE (

    The use of a liner under different bulk-fill resin composites: 3D GAP formation analysis by x-ray microcomputed tomography

    Get PDF
    Gap formation of composite resin restorations is a serious shortcoming in clinical practice. Polymerization shrinkage stress exceeds the tooth-restoration bond strength, and it causes bacterial infiltration within gaps between cavity walls and the restorative material. Thus, an intermediate liner application with a low elastic modulus has been advised to minimize polymerization shrinkage as well as gap formation. Objective: The purpose of this in vitro study was to assess gap formation volume in premolars restored with different bulk-fill composites, with and without a resin-modified glass-ionomer cement (RMGIC) liner, using x-ray micro-computed tomography (micro-CT). Methodology: Sixty extracted human maxillary premolars were divided into six groups according to bucco-palatal dimensions (n=10). Standardized Class II mesio-occluso-distal cavities were prepared. G-Premio Bond (GC Corp., Japan) was applied in the selective-etch mode. Teeth were restored with high-viscosity (Filtek Bulk Fill, 3M ESPE, USA)-FB, sonic-activated (SonicFill 2, Kerr, USA)-SF and low viscosity (Estelite Bulk Fill Flow, Tokuyama, Japan)-EB bulk-fill composites, with and without a liner (Ionoseal, Voco GmbH, Germany)-L. The specimens were subjected to 10,000 thermocycles (5-55°C) and 50,000 simulated chewing cycles (100 N). Gap formation based on the volume of black spaces at the tooth-restoration interface was quantified in mm3 using micro-computed tomography (SkyScan, Belgium), and analyses were performed. Data were analyzed using repeated-measures ANOVA and the Bonferroni correction test (p < 0.05). Results: The gap volume of all tested bulk-fill composites demonstrated that Group SF (1.581±0.773) had significantly higher values than Group EB (0.717±0.679). Regarding the use of a liner, a significant reduction in gap formation volume was observed only in Group SFL (0.927±0.630) compared with Group SF (1.581±0.773). Conclusion: It can be concluded that different types of bulk-fill composite resins affected gap formation volume. Low-viscosity bulk-fill composites exhibited better adaptation to cavity walls and less gap formation than did sonic-activated bulk-fill composites. The use of an RMGIC liner produced a significant reduction in gap formation volume for sonic-activated bulk-fill composites

    Influence of powdered dentin on the shear bond strength of dentin bonding systems

    Full text link
    This study evaluated the effect of different amounts of dentin powder (DP) mixed in Clearfil SE Bond (CSB) or Single Bond (SB) on adhesion to dentin. Human third molars (n=96) were sectioned to expose the mid-coronal dentin and divided into eight experimental groups (n=12 per group), namely, Group 1: CSB, Group 2: CSB+1.5 mg DP, Group 3: CSB+3 mg DP, Group 4: CSB+4.5 mg DP, Group 5: SB, Group 6: SB+1.5 mg DP, Group 7: SB+3 mg DP, and Group 8: SB+4.5 mg DP. Filtek Z250 composite was bonded onto dentin, and all specimens were subjected to shear bond strength test at a crosshead speed of 1 mm/min. Highest bond strength was obtained in Groups 1, 2, and 3 (15.1, 13.5, and 16.4 MPa respectively; p>0.05) and the lowest in Groups 6, 7, and 8 (5.5, 5.6, 4 MPa; p>0.05). DP addition, regardless of amount, adversely affected the bond strength of SB. Bond strength of CSB was not affected when 1.5 or 3 mg of DP was added

    Investigation of eluted monomers from resin-based root canal sealer by high-performance liquid chromatography analysis.

    No full text
    The purpose of the current study was to determine the amount of urethane dimethacrylate (UDMA), bisphenol A-glycidyl methacrylate (Bis-GMA), poly (ethylene glycol) dimethacrylate (PEGDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and 2-hydroxyethyl methacrylate (HEMA) eluted from resin-based root canal sealer, epiphany, using high-performance liquid chromatography (HPLC)

    Use of Artificial Neural Network in Determination of Shade, Light Curing Unit, and Composite Parameters' Effect on Bottom/Top Vickers Hardness Ratio of Composites

    No full text
    Objective. To assess the influence of light emitting diode (LED) and quartz tungsten halogen (QTH) light curing unit (LCU) on the bottom/top (B/T) Vickers Hardness Number (VHN) ratio of different composites with different shades and determination of the most significant effect on B/T VHN ratio of composites by shade, light curing unit, and composite parameters using artificial neural network. Method. Three composite resin materials {[}Clearfil Majesty Esthetic (CME), Tetric N Ceram(TNC), and Tetric Evo Ceram (TEC)] in different shades (HO, A2, B2, Bleach L, Bleach M) were used. The composites were polymerized with three different LED LCUs (Elipar S10, Bluephase 20i, Valo) and halogen LCU (Hilux). Vickers hardness measurements were made at a load of 100 g for 10 sec on the top and bottom surfaces and B/T VHN ratio calculated. The data were statistically analyzed with three-way ANOVA and Tukey test at a significance level of 0.05. The obtained measurements and data were then fed to a neural network to establish the correlation between the inputs and outputs. Results. There were no significant differences between the B/T VHN ratio of LCUs for the HO and B shades of CME (p>0.05), but there were significant differences between the B/T VHN ratio of LCUs for shade A2 (p<0.05). No significant difference was determined between the B/T VHN ratio of LCUs for all shades of TNC (p>0.05). For TEC, there was no significant difference between the B/T VHN ratio of halogen and LED LCUs (p>0.05), but a significant difference was determined among the LED LCUs (p<0.05). The artificial neural network results showed that a combination of the curing light and composite parameter had the most significant effect on the B/T VHN ratio of composites. Shade has the lowest effect on the B/T VHN ratio of composites. Conclusion. The B/T VHN ratio values of different resin-based composite materials may vary depending on the light curing device. In addition, the artificial neural network results showed that the LCU and composite parameter had the most significant effect on the B/T VHN ratio of the composites. Shade has the lowest effect on the B/T VHN ratio of composites

    Can Fiber Application Affect the Fracture Strength of Endodontically Treated Teeth Restored with a Low Viscosity Bulk-Fill Composite?

    No full text
    Objective. The aim of this study is to evaluate the effects of different fiber insertion techniques and thermomechanical aging on the fracture resistance of endodontically treated mandibular premolar teeth restored using bulk-fill composites. Materials and Methods. Eighty human mandibular premolar teeth were randomly divided into eight groups: Group IN, Group BF, Group PRF1, Group PRF2, Group IN-TMA, Group BF-TMA, Group PRF1-TMA ,and Group PRF2-TMA. Group IN (intact) and Group IN-TMA (intact but subjected to thermomechanical aging) served as control groups. In the other six groups, endodontic treatment was performed and standardized mesio-occluso-distal (MOD) cavities were prepared. In BF, PRF1, and PRF2, the cavities were restored with bulk-fill composite only, bulk-fill/Ribbond, and bulk-fill/additional Ribbond, respectively. In BF-TMA, PRF1-TMA, and PRF2-TMA, the teeth were subjected to thermomechanical aging after the restorations. All of the teeth were fractured on the universal testing machine. Fracture surfaces were analyzed with a stereomicroscope. Results. Control groups showed significantly higher fracture strengths than tested groups (P<0.05). No statistically significant difference was observed among the tested groups (P>0.05). Most of the favorable fractures were seen in PRF1, PRF2, and PRF2-TMA. Most of the unfavorable fractures were seen in BF-TMA. Conclusions. Although fiber insertion with different techniques did not increase the fracture strength of teeth restored with bulk-fill composites, it increased the favorable fracture modes. Thermomechanical aging did not change the fracture strength of the groups
    corecore