27 research outputs found

    Rodent population dynamics affect seedling recruitment in alpine habitats

    Get PDF
    Questions: How do rodents with cyclic population dynamics affect seedling recruitment in alpine habitats? Does disturbance fromrodents have larger implications on seedling recruitment in some plant communities than in others? Location: Snowbeds and sheltered heaths in the low-alpine zone in areas of Børgefjell and Dovrefjell, Norway. Methods: We recorded seedling emergence, rodent activity and cover of mosses, lichens, litter and bare ground in 270 plots in snowbeds and sheltered heaths in a rodent population peak year and in the following low-density year. Results: Seedling recruitment was positively correlated with disturbances from lemmings and voles in both years. More seedlings emerged in the low-density year than in the year of the population peak. Snowbeds had higher seedling recruitment than the sheltered heaths, but both habitats were equally affected by disturbances fromrodents. Conclusions: Rodent activity created gaps and increased seedling emergence in these alpine plant communities, particularly in the year after the rodent peak, both in snowbeds and sheltered heath habitats. Our study therefore suggests that regeneration patterns in alpine vegetation are tightly linked to the population cycles of lemmings and voles,which peak in density at 3- to 5-yr intervals.publishedVersionPaid Open Acces

    Solar cell process development in the european integrated project crystalclear

    Get PDF
    CrystalClear is a large integrated project funded by the European Commission that aims to drastically reduce the cost of crystalline Si PV modules, down to 1 Euro/Wp. Among the different subprojects, the one dealing with the development of advanced solar cells is relatively large (with 11 partners out of the 15 Crystal Clear partners taking part) and has a crucial role. The goal of the subproject is to develop cell design concepts and manufacturing processes that would enable a reduction in the order of 40% of the cell processing costs per Wp. In this paper, we give an overview of all the development work that has taken place in the CrystalClear solar cells subproject so far. World class results have been achieved, particularly on high efficiency cells on Si ribbons, and on industrial-type solar cells on very thin (120 (j.m thick) substrates

    A review on 5 years cell development within the European integrated project Crystal Clear

    No full text
    CrystalClear is a large integrated project funded by the European Commission that aims to drastically reduce the cost of crystalline Si PV modules, down to 1 Euro/Wp. Among the different subprojects, the one dealing with the development of advanced solar cells is relatively large (with 11 partners out of the 15 Crystal Clear partners taking part) and has a crucial role. The goal of the subproject is to develop cell design concepts and manufacturing processes that would enable a reduction in the order of 40% of the cell processing costs per Wp. In this paper, we give an overview of all the development work that has taken place in the CrystalClear solar cells subproject so far. World class results have been achieved, particularly on high efficiency cells on Si ribbons, and on industrial-type solar cells on very thin (120 μm thick) substrates

    A review on 5 years cell development within the european integrated project crystal clear

    No full text
    The integrated project (IP) Crystal Clear has been finalized in June 2009 and thus a chapter of more than 5 years successful collaboration between European solar cell research institutes and industry is closed. This paper reviews the achievements within the 4th subproject (SP4) of Crystal Clear dealing with the development of advanced solar cell concepts. Within SP4, 12 of the 16 partners have participated and have formed a productive consortium. The goal of this subproject was the further reduction of the cell production costs to enable the psychological important Si PV module price below 1 Euro/Watt. This should be reached by novel cell designs and manufacturing processes in order to achieve a process cost reduction of 40% (cost per Wp). One major effort was put in the development of novel cell concepts and processes suited for thin wafers in industrial fabrication. Three cell concepts were distinguished and developed by the participating institutes: i-PERC, MWT with full Al, and solar cells with laser fired contacts (PERC-LFC). In addition to the effort to implement these concepts into an industrial type of process with large area wafers, excellent results have been achieved on EFG and RGS ribbons. World record results with laboratory-type processes could be reported, with efficiencies of 18.2 % on EFG ribbons and 14.4 % on RGS ribbons. The defect mechanism of these materials has been studied in detail and efficiency limits have been indicated. The paper will refer to the separate contributions submitted to the conference by the different partners on specific topics
    corecore