10 research outputs found

    Observation of single-spin Dirac fermions at the graphene/ferromagnet interface

    No full text
    With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One o

    Observation of single-spin Dirac fermions at the graphene/ferromagnet interface

    Get PDF
    With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One o

    Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces

    Get PDF
    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the [Image: see text] surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å(−1) and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified [Image: see text] surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications

    Epitaxial B-Graphene: large-scale growth and atomic structure

    No full text
    Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an ecient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001

    Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

    No full text
    Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated

    Large-scale sublattice asymmetry in pure and boron-doped graphene

    No full text
    The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications

    Large-Scale Sublattice Asymmetry in Pure and Boron-Doped Graphene

    No full text
    The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications
    corecore