36 research outputs found

    Exploring amide linkage in a polyviologen derivative towards simultaneous voltammetric determination of Pb(II), Cu(II) and Hg(II) ions

    Get PDF
    In this study, we report reductive electrosynthesis of a polyviologen derivative bearing amide linkage in its side chain, derived from a cyanopyridinium based monomer with amide functionality. The as grown film was characterized by cyclic voltammetry which displays a well-defined and reversible two step redox response characteristic of viologen. FTIR analysis show evidence of amide linkage and successful reduction of cyanopyridinium moieties to polyviologen. In situ multi ESR/UV-Vis-NIR spectroelectrochemistry show a single line in ESR signal, thereby suggesting polarons as the only charge carrier involved during charging/discharging process. Furthermore, a characteristic UV&ndash;Vis absorption spectra confirms viologen formation. Finally, the polyviologen film is subjected to simultaneous voltammetric determination of heavy metal ions, Pb(II), Cu(II) and Hg(II). The amide linkage in the polyviologen derivative is supposedly complexing these divalent metal ions, enabling their sensitive and simultaneous determination with low detection limits.</div

    A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices

    Get PDF
    Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∌ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∌ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices

    Furan-containing double tetraoxa[7]helicene and its radical cation

    Get PDF
    An unprecedented furan-based double oxa[7]helicene 1 was achieved, featuring a stable twisted conformation with π-overlap at both helical ends. The excellent conformational stability allowed for optical resolution of 1, which provided a pair of enantiomers exhibiting pronounced mirror-imaged circular dichroism and circularly polarized luminescence activity. The radical cation of 1 was obtained by chemical oxidation as evidenced by UV-Vis-NIR absorption, electron paramagnetic resonance spectroscopy and in situ spectroelectrochemistry. The present work is the starting point for the investigation of open-shell oxahelicenes
    corecore