1,807 research outputs found
Spatially anisotropic Heisenberg Kagome antiferromagnet
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite
has recently been the subject of experimental studies [Hiroi et al.,2001]. It
has been suggested that the magnetic properties of this material are described
by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic
exchange couplings. We report on investigations of the Sp(N) symmetric
generalisation of this model in the large N limit. We obtain a detailed
description of the dependence of possible ground states on the anisotropy and
on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase,
incommensurate phases with and without long range order and a decoupled chain
phase emerges.Comment: 6 pages, 6 figures, proceedings of the HFM2006 conference, to appear
in a special issue of J. Phys.: Condens. Matte
Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome
Background: Platelet-leukocyte gel (PLG) is being used during various surgical procedures in an attempt to enhance the healing process. We studied the effects of PLG on postoperative recovery of patients undergoing open subacromial decompression (OSD). Methods: PLG was produced from platelet-leukocyte-rich plasma (P-LRP), prepared from a unit of whole blood. Forty patients were included in the study. Self-assessed evaluations, using the American Shoulder and Elbow Surgeons scoring system of activities of daily living (ADL), joint instability, pain levels, pain medications, and clinical evaluations for range of motion were conducted. Results: Platelet and leukocyte counts were significantly increased in the P-LRP compared to baseline counts. Treated patients demonstrated decreased visual analog scales for pain and used significantly less pain medication, had an improved range of motion during passive forward elevation, external rotation, external rotation with arm at 90 degrees abduction, internal rotation, and cross body adduction compared to control patients (p < 0.001). No differences in the instability score were observed between the groups. Furthermore, treated patients performed more ADL (p < 0.05). Conclusion: In the PLG-treated group, recovery was faster and patients returned earlier to daily activities and also took less pain medication than control subjects
Finite-temperature ordering in a two-dimensional highly frustrated spin model
We investigate the classical counterpart of an effective Hamiltonian for a
strongly trimerized kagome lattice. Although the Hamiltonian only has a
discrete symmetry, the classical groundstate manifold has a continuous global
rotational symmetry. Two cases should be distinguished for the sign of the
exchange constant. In one case, the groundstate has a 120^\circ spin structure.
To determine the transition temperature, we perform Monte-Carlo simulations and
measure specific heat, the order parameter as well as the associated Binder
cumulant. In the other case, the classical groundstates are macroscopically
degenerate. A thermal order-by-disorder mechanism is predicted to select
another 120^\circ spin-structure. A finite but very small transition
temperature is detected by Monte-Carlo simulations using the exchange method.Comment: 11 pages including 9 figures, uses IOP style files; to appear in J.
Phys.: Condensed Matter (proceedings of HFM2006
Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3
We study low temperature properties of an atomic spinless interacting Fermi
gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer.
The system is described by a quantum spin 1/2 model on the triangular lattice
with couplings depending on bonds directions. Using exact diagonalizations we
show that the system exhibits non-standard properties of a {\it quantum
spin-liquid crystal}, combining a planar antiferromagnetic order with an
exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.
Colloid-oil-water-interface interactions in the presence of multiple salts: charge regulation and dynamics
We theoretically and experimentally investigate colloid-oil-water-interface
interactions of charged, sterically stabilized, poly(methyl-methacrylate)
colloidal particles dispersed in a low-polar oil (dielectric constant
) that is in contact with an adjacent water phase. In this model
system, the colloidal particles cannot penetrate the oil-water interface due to
repulsive van der Waals forces with the interface whereas the multiple salts
that are dissolved in the oil are free to partition into the water phase. The
sign and magnitude of the Donnan potential and/or the particle charge is
affected by these salt concentrations such that the effective interaction
potential can be highly tuned. Both the equilibrium effective colloid-interface
interactions and the ion dynamics are explored within a Poisson-Nernst-Planck
theory, and compared to experimental observations.Comment: 13+2 pages, 5+3 figures; V2: small clarifications in the tex
Atomic quantum gases in Kagom\'e lattices
We demonstrate the possibility of creating and controlling an ideal and
\textit{trimerized} optical Kagom\'e lattice, and study the low temperature
physics of various atomic gases in such lattices. In the trimerized Kagom\'e
lattice, a Bose gas exhibits a Mott transition with fractional filling factors,
whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum
magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half filling
for both components represents a frustrated quantum antiferromagnet with a
resonating-valence-bond ground state and quantum spin liquid behavior dominated
by continuous spectrum of singlet and triplet excitations. We discuss the
method of preparing and observing such quantum spin liquid employing molecular
Bose condensates.Comment: 4 pages, 1 figure. Missing affiliations adde
Scaling of the Hysteresis Loop in Two-dimensional Solidification
The first order phase transitions between a two-dimensional (2d) gas and the
2d solid of the first monolayer have been studied for the noble gases Ar, Kr
and Xe on a NaCl(100) surface in quasi-equilibrium with the three-dimensional
gas phase. Using linear temperature ramps, we show that the widths of the
hysteresis loops of these transitions as a function of the heating rate, r,
scales with a power law r^alpha with alpha between 0.4 and 0.5 depending on the
system. The hysteresis loops for different heating rates are similar. The
island area of the condensed layer was found to grow initially with a t^4 time
dependence. These results are in agreement with theory, which predicts alpha =
0.5 and hysteresis loop similarity.Comment: 4 pages, 5 figures, Revte
Drijfmesttoediening op klei in voorjaar mogelijk
Voor de teelt van maos op kleigrond kan toediening van drijfmest uitgesteld worden tot het voorjaar. Voordelen hiervan zijn een betere benutting van de mineralen, minder mineralenverliezen en een lager stikstofoverschot
Size Dependence In The Disordered Kondo Problem
We study here the role randomly-placed non-magnetic scatterers play on the
Kondo effect. We show that spin relaxation effects (with time )in the
vertex corrections to the Kondo self-energy lead to an exact cancellation of
the singular temperature dependence arising from the diffusion poles. For a
thin film of thickness and a mean-free path , disorder provides a
correction to the Kondo resistivity of the form
that explains both the disorder and sample-size depression of the Kondo effect
observed by Blachly and Giordano (PRB {\bf 51}, 12537 (1995)).Comment: 11 pages, LaTeX, 2 Postscript figure
Quantum gases in trimerized kagom\'e lattices
We study low temperature properties of atomic gases in trimerized optical
kagom\'{e} lattices. The laser arrangements that can be used to create these
lattices are briefly described. We also present explicit results for the
coupling constants of the generalized Hubbard models that can be realized in
such lattices. In the case of a single component Bose gas the existence of a
Mott insulator phase with fractional numbers of particles per trimer is
verified in a mean field approach. The main emphasis of the paper is on an
atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with
two fermions per site. This system is shown to be described by a quantum spin
1/2 model on the triangular lattice with couplings that depend on the bond
directions. We investigate this model by means of exact diagonalization. Our
key finding is that the system exhibits non-standard properties of a quantum
spin-liquid crystal: it combines planar antiferromagnetic order in the ground
state with an exceptionally large number of low energy excitations. The
possibilities of experimental verification of our theoretical results are
critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous
minor corrections with respect to former lanl submissio
- …
