57 research outputs found

    Industry solutions on Smart Farming Technology

    Get PDF
    Smart AKIS project aims at examining the suitability and use of Smart Farming Technologies (SFT) in the EU Agriculture involving farmers, the agricultural machinery industry, academia, research centers, agricultural engineering and public bodies. The purpose of this document is to present the report on methodology, standards and current findings within the Smart-AKIS project. The report provides a selection guide, detailing the issues that have to be taken into account in order to ensure the collection of data in a homogeneous way, and avoid misconceptions. This document is an update on the progress made in the data assessment that is currently ongoing on captuing industrial products related to SFTs that have not yet reached mainstreaming agriculture. This report is organized in three chapters. The first chapter will introduce current work on the Smart-Akis project as well as the objective of this document in the overall smart-akis framework. The second chapter will present the methodological approach that has taken to reach the industrial partners, the specific questions and the analysis procedure, wjhile the last chapter will present the interim results. The last chapter summarizes conclusion

    Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion

    Get PDF
    Dietary triglycerides are hydrolyzed in the small intestine principally by pancreatic lipase. Following uptake by enterocytes and secretion as chylomicrons, dietary lipids are cleared from the bloodstream via lipoprotein lipase. Whereas lipoprotein lipase is inhibited by several proteins including Angiopoietin-like 4 (Angptl4), no endogenous regulator of pancreatic lipase has yet been identified. Here we present evidence that Angptl4 is an endogenous inhibitor of dietary lipid digestion. Angptl4−/− mice were heavier compared to their wild-type counterparts without any difference in food intake, energy expenditure or locomotor activity. However, Angptl4−/− mice showed decreased lipid content in the stools and increased accumulation of dietary triglycerides in the small intestine, which coincided with elevated luminal lipase activity in Angptl4−/− mice. Furthermore, recombinant Angptl4 reduced the activity of pancreatic lipase as well as the lipase activity in human ileostomy output. In conclusion, our data suggest that Angptl4 is an endogenous inhibitor of intestinal lipase activity

    Long-term effects of best management practices on crop yield and nitrogen surplus

    Get PDF
    Inherent in the concept of good agricultural practice (BMP) is that it improves resource use efficiency, mitigates environmental impact or increases farm profitability. However, it is usually impossible to achieve all the objectives, and trade-offs need to be accepted, such as a reduction in productivity together with a reduction in costs or an increase of soil organic matter. A European FP7 project, Catch-C (http://www.catch-c.eu) analyses the effects that different management practices have on productivity, mitigation of climate change and chemical, physical and biological soil fertility, based on simple indicators. Such indicators were collected from international literature, national scientific or technical journals, or grey literature that dealt with long-term field trials in Europe. We collected and analysed data from more than 350 experiments. This paper presents the overall results of the effects of a series of BMP have on crop productivity, soil nitrogen (N) uptake, N use efficiency end N balance. Important interactions with soil and climate types, crop and duration of the experiment were noticed for most BMPs. Rotations, also including double cropping, were among practices with more positive effects of productivity and N indicators. A slight reduction of yield counteracted benefits to soil quality and to climate change mitigation of minimum and no tillage, and of organic fertilisers

    Large-scale ICU data sharing for global collaboration: the first 1633 critically ill COVID-19 patients in the Dutch Data Warehouse

    Get PDF

    Can Precision Agriculture Increase the Profitability and Sustainability of the Production of Potatoes and Olives?

    No full text
    For farmers, the application of Precision Agriculture (PA) technology is expected to lead to an increase in profitability. For society, PA is expected to lead to increased sustainability. The objective of this paper is to determine for a number of common PA practices how much they increase profitability and sustainability. For potato production in The Netherlands, we considered variable rate application (VRA) of soil herbicide, fungicide for late blight control, sidedress N, and haulm killing herbicide. For olive production in Greece, we considered spatially variable application of P and K fertilizer and lime. For each of the above scenarios, we quantified the value of outputs, the cost of inputs, and the environmental costs. This allowed us to calculate profit as well as social profit, where the latter is defined as revenues minus conventional costs minus the external costs of production. Social profit can be considered an overall measure of sustainability. Our calculations show that PA in potatoes increases profit by 21% (420 € ha−1) and social profit by 26%. In olives, VRA application of P, K, and lime leads to a strong reduction in nutrient use and although this leads to an increase in sustainability, it has only a small effect on profit and on social profit. In conclusion, PA increases sustainability in olives and both profitability and sustainability in potatoes
    corecore