185 research outputs found

    Inhibition of MELK Protooncogene as an Innovative Treatment for Intrahepatic Cholangiocarcinoma

    Get PDF
    Background and Objectives: Intrahepatic cholangiocarcinoma (iCCA) is a pernicious tumor characterized by a dismal outcome and scarce therapeutic options. To substantially improve the prognosis of iCCA patients, a better understanding of the molecular mechanisms responsible for development and progression of this disease is imperative. In the present study, we aimed at elucidating the role of the maternal embryonic leucine zipper kinase (MELK) protooncogene in iCCA. Materials and Methods: We analyzed the expression of MELK and two putative targets, Forkhead Box M1 (FOXM1) and Enhancer of Zeste Homolog 2 (EZH2), in a collection of human iCCA by real-time RT-PCR and immunohistochemistry (IHC). The effects on iCCA growth of both the multi-kinase inhibitor OTSSP167 and specific small-interfering RNA (siRNA) against MELK were investigated in iCCA cell lines. Results: Expression of MELK was significantly higher in tumors than in corresponding non-neoplastic liver counterparts, with highest levels of MELK being associated with patients' shorter survival length. In vitro, OTSSP167 suppressed the growth of iCCA cell lines in a dose-dependent manner by reducing proliferation and inducing apoptosis. These effects were amplified when OTSSP167 administration was coupled to the DNA-damaging agent doxorubicin. Similar results, but less remarkable, were obtained when MELK was silenced by specific siRNA in the same cells. At the molecular level, siRNA against MELK triggered downregulation of MELK and its targets. Finally, we found that MELK is a downstream target of the E2F1 transcription factor. Conclusion: Our results indicate that MELK is ubiquitously overexpressed in iCCA, where it may represent a prognostic indicator and a therapeutic target. In particular, the combination of OTSSP167 (or other, more specific MELK inhibitors) with DNA-damaging agents might be a potentially effective therapy for human iCCA

    Assessment of distribution and evolution of Mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance

    Get PDF
    BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct

    Cross‐presentation of dead‐cell‐associated antigens by DNGR‐1âș dendritic cells contributes to chronic allograft rejection in mice

    Get PDF
    The purpose of this study was to elucidate whether DC NK lectin group receptor-1 (DNGR-1)-dependent cross-presentation of dead-cell-associated antigens occurs after transplantation and contributes to CD8(+)T cell responses, chronic allograft rejection (CAR), and fibrosis. BALB/c or C57BL/6 hearts were heterotopically transplanted into WT, Clec9a(-/-), or Batf3(-/-)recipient C57BL/6 mice. Allografts were analyzed for cell infiltration, CD8(+)T cell activation, fibrogenesis, and CAR using immunohistochemistry, Western blot, qRT(2)-PCR, and flow cytometry. Allografts displayed infiltration by recipient DNGR-1(+)DCs, signs of CAR, and fibrosis. Allografts in Clec9a(-/-)recipients showed reduced CAR (p < 0.0001), fibrosis (P= 0.0137), CD8(+)cell infiltration (P < 0.0001), and effector cytokine levels compared to WT recipients. Batf3-deficiency greatly reduced DNGR-1(+)DC-infiltration, CAR (P < 0.0001), and fibrosis (P= 0.0382). CD8 cells infiltrating allografts of cytochrome C treated recipients, showed reduced production of CD8 effector cytokines (P < 0.05). Further, alloreactive CD8(+)T cell response in indirect pathway IFN-gamma ELISPOT was reduced in Clec9a(-/-)recipient mice (P= 0.0283). Blockade of DNGR-1 by antibody, similar to genetic elimination of the receptor, reduced CAR (P= 0.0003), fibrosis (P= 0.0273), infiltration of CD8(+)cells (p= 0.0006), and effector cytokine levels. DNGR-1-dependent alloantigen cross-presentation by DNGR-1(+)DCs induces alloreactive CD8(+)cells that induce CAR and fibrosis. Antibody against DNGR-1 can block this process and prevent CAR and fibrosis

    The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease

    Get PDF
    Background Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. Methods We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. Results Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. Conclusions Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesi

    FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

    Get PDF
    Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention

    Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models.

    Get PDF
    [EN] BACKGROUND & AIMS: Cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors associated with dismal prognosis. Alterations in post-translational modifications (PTMs), including NEDDylation, result in abnormal protein dynamics, cell disturbances and disease. Herein, we investigate the role of NEDDylation in CCA development and progression. METHODS: Levels and functions of NEDDylation, together with response to pevonedistat (NEDDylation inhibitor) or CRISPR/Cas9 against NAE1 were evaluated invitro, invivo and/or in patients with CCA. The development of preneoplastic lesions in Nae1+/- mice was investigated using an oncogene-driven CCA model. The impact of NEDDylation in CCA cells on tumor-stroma crosstalk was assessed using CCA-derived cancer-associated fibroblasts (CAFs). Proteomic analyses were carried out by mass-spectrometry. RESULTS: The NEDDylation machinery was found overexpressed and overactivated in human CCA cells and tumors. Most NEDDylated proteins found upregulated in CCA cells, after NEDD8-immunoprecipitation and further proteomics, participate in the cell cycle, proliferation or survival. Genetic (CRISPR/Cas9-NAE1) and pharmacological (pevonedistat) inhibition of NEDDylation reduced CCA cell proliferation and impeded colony formation invitro. NEDDylation depletion (pevonedistat or Nae1+/- mice) halted tumorigenesis in subcutaneous, orthotopic, and oncogene-driven models of CCA invivo. Moreover, pevonedistat potentiated chemotherapy-induced cell death in CCA cells invitro. Mechanistically, impaired NEDDylation triggered the accumulation of both cullin RING ligase and NEDD8 substrates, inducing DNA damage and cell cycle arrest. Furthermore, impaired NEDDylation in CCA cells reduced the secretion of proteins involved in fibroblast activation, angiogenesis, and oncogenic pathways, ultimately hampering CAF proliferation and migration. CONCLUSION: Aberrant protein NEDDylation contributes to cholangiocarcinogenesis by promoting cell survival and proliferation. Moreover, NEDDylation impacts the CCA-stroma crosstalk. Inhibition of NEDDylation with pevonedistat may represent a potential therapeutic strategy for patients with CCA. LAY SUMMARY: Little is known about the role of post-translational modifications of proteins in cholangiocarcinoma development and progression. Herein, we show that protein NEDDylation is upregulated and hyperactivated in cholangiocarcinoma, promoting tumor growth. Pharmacological inhibition of NEDDylation halts cholangiocarcinogenesis and could be an effective therapeutic strategy to tackle these tumors.This article is based upon work from the COST Action CA18122 European Cholangiocarcinoma Network supported by COST (European Cooperation in Science and Technology: www.cost.eu)

    Antibodies against viral nucleo-, phospho-, and X protein contribute to serological diagnosis of fatal Borna disease virus 1 infections

    Get PDF
    Borna disease virus 1 (BoDV-1) causes rare but often fatal encephalitis in humans. Late diagnosis prohibits an experimental therapeutic approach. Here, we report a recent case of fatal BoDV-1 infection diagnosed on day 12 after hospitalization by detection of BoDV-1 RNA in the cerebrospinal fluid. In a retrospective analysis, we detect BoDV-1 RNA 1 day after hospital admission when the cell count in the cerebrospinal fluid is still normal. We develop a new ELISA using recombinant BoDV-1 nucleoprotein, phosphoprotein, and accessory protein X to detect seroconversion on day 12. Antibody responses are also shown in seven previously confirmed cases. The individual BoDV-1 antibody profiles show variability, but the usage of three different BoDV-1 antigens results in a more sensitive diagnostic tool. Our findings demonstrate that early detection of BoDV-1 RNA in cerebrospinal fluid and the presence of antibodies against at least two different viral antigens contribute to BoDV-1 diagnosis. Physicians in endemic regions should consider BoDV-1 infection in cases of unclear encephalopathy and initiate appropriate diagnostics at an early stage

    Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy

    Get PDF
    Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
    • 

    corecore