287 research outputs found

    Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the 'bound' phase of organic residues of archaeological pottery vessels.

    Get PDF
    A methodology is presented for the determination of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues preserved in archaeological potsherds. The method comprises saponification, esterification, silica gel column chromatographic fractionation, and analysis by gas chromatography/mass spectrometry. The electron ionisation mass spectra of the trimethylsilyl ether methyl ester derivatives are characterised by fragment ions arising from cleavage of the bond between the two vicinal trimethylsiloxy groups. Other significant fragment ions are [M–15]+., [M–31]+., m/z 147 and ions characteristic of vicinal disubstituted (trimethylsiloxy) TMSO? groups (?7,8, ?9,10,?11,12 and ?13,14: m/z 304, 332, 360 and 388, respectively). The dihydroxy fatty acids identified in archaeological extracts exhibited carbon numbers ranging from C16 to C22 and concentrations varying from 0.05 to 14.05 ?g g?1. The wide range of dihydroxy fatty acids observed indicates that this approach may be applied confidently in screening archaeological potsherds for the degradation products of monounsaturated fatty acids derived from commodities processed in archaeological pottery vessels

    Engineering soil organic matter quality: Biodiesel Co-Product (BCP) stimulates exudation of nitrogenous microbial biopolymers

    Get PDF
    Biodiesel Co-Product (BCP) is a complex organic material formed during the transesterification of lipids. We investigated the effect of BCP on the extracellular microbial matrix or ‘extracellular polymeric substance’ (EPS) in soil which is suspected to be a highly influential fraction of soil organic matter (SOM). It was hypothesised that more N would be transferred to EPS in soil given BCP compared to soil given glycerol. An arable soil was amended with BCP produced from either 1) waste vegetable oils or 2) pure oilseed rape oil, and compared with soil amended with 99% pure glycerol; all were provided with 15N labelled KNO3. We compared transfer of microbially assimilated 15N into the extracellular amino acid pool, and measured concomitant production of exopolysaccharide. Following incubation, the 15N enrichment of total hydrolysable amino acids (THAAs) indicated that intracellular anabolic products had incorporated the labelled N primarily as glutamine and glutamate. A greater proportion of the amino acids in EPS were found to contain 15N than those in the THAA pool, indicating that the increase in EPS was comprised of bioproducts synthesised de novo. Moreover, BCP had increased the EPS production efficiency of the soil microbial community (μg EPS per unit ATP) up to approximately double that of glycerol, and caused transfer of 21% more 15N from soil solution into EPS-amino acids. Given the suspected value of EPS in agricultural soils, the use of BCP to stimulate exudation is an interesting tool to consider in the theme of delivering sustainable intensification

    Immediate replacement of fishing with dairying by the earliest farmers of the NE Atlantic archipelagos

    Get PDF
    The appearance of farming, from its inception in the Near East around 12 000 years ago, finally reached the northwestern extremes of Europe by the fourth millennium BC or shortly thereafter. Various models have been invoked to explain the Neolithization of northern Europe; however, resolving these different scenarios has proved problematic due to poor faunal preservation and the lack of specificity achievable for commonly applied proxies. Here, we present new multi-proxy evidence, which qualitatively and quantitatively maps subsistence change in the northeast Atlantic archipelagos from the Late Mesolithic into the Neolithic and beyond. A model involving significant retention of hunter–gatherer–fisher influences was tested against one of the dominant adoptions of farming using a novel suite of lipid biomarkers, including dihydroxy fatty acids, ω-(o-alkylphenyl)alkanoic acids and stable carbon isotope signatures of individual fatty acids preserved in cooking vessels. These new findings, together with archaeozoological and human skeletal collagen bulk stable carbon isotope proxies, unequivocally confirm rejection of marine resources by early farmers coinciding with the adoption of intensive dairy farming. This pattern of Neolithization contrasts markedly to that occurring contemporaneously in the Baltic, suggesting that geographically distinct ecological and cultural influences dictated the evolution of subsistence practices at this critical phase of European prehistory

    Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms

    Get PDF
    Many soil microbes exist in biofilms. These biofilms are typified by variable quantities of extracellular polymeric substances (EPS: predominantly polysaccharides, glycoconjugates, and proteins) and the embedded microbial cells. A method to measure soil-EPS (the biofilm exclusive of microbial cells) has not yet been described. The present work investigates the potential of five extraction methods to estimate changes in soil-EPS content. A rationale for selection of appropriate EPS extraction and methodology is discussed, including the crucial consideration of both intracellular and extracellular contamination. EPS was developed in situ by provision of labile C (glycerol) to the microbial biomass of a moist soil and then applying desiccation stress. Only two out of the five extraction methods showed statistically significant increases in polysaccharide production responding to substrate addition. Humified organic matter, estimated by its humic acid equivalent (HAE) was used to indicate the degree of extracellular contamination, and/or creation of humic artefacts – both of which affect detection of changes in EPS. The HAE concentration was very high when applying original and modified methods designed to extract glomalin related soil protein (GRSP). Extraction methods involving heating with dilute sulphuric acid appeared to overestimate EPS-polysaccharide. Using microbial ATP as an indicator of cell-lysis, confidence could only be ascribed to EPS extraction with cation exchange resin. Using this method, the expected increases in EPS-polysaccharide were clearly apparent. The HAE/protein ratios of EPS extracts were also lowest with cation exchange – indicating this method did not cause excessive contamination from humified soil organic matter or create related artefacts

    The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web

    Get PDF
    Bulk collagen δ15N analysis is widely used to investigate past diet and trophic positions, but these values average the δ15N values of the constituent amino acids. Compound–specific isotope analysis of amino acids (AAs) can help elucidate the complex metabolic effects underpinning bulk δ15N values. Although trophic level effects on individual AA δ15N values have been investigated in aquatic and terrestrial invertebrate food webs, most archaeological applications involve terrestrial herbivores, hence a greater understanding of these effects between diet and consumer in this food chain is required. The North Wyke Farm Platform provided baseline nitrogen isotope information for cattle grazing on a Lolium perenne- dominated pasture. Bulk dentine δ15N values show a shift expected for a one trophic level increase, but obscure insight into the underlying metabolic processes that cause this change in value. However, determination of AA δ15N values of hydrolysable plant protein and cattle tooth dentine clarifies the trophic effect on consumer AA δ15N values. The observed trophic shift in the studied system is different from previously studied food webs, with a trophic enrichment factor, based on the δ15N values of glutamate and phenylalanine, of 4.0‰ compared to 7.6‰ commonly used in ecological and archaeological studies. This emphasises the need to understand the trophic shifts in the particular food web being investigated in order to apply isotopic investigations in archaeological contexts

    Runoff- and erosion-driven transport of cattle slurry:linking molecular tracers to hydrological processes

    Get PDF
    The addition of cattle slurry to agricultural land is a widespread practise, but if not correctly managed it can pose a contamination risk to aquatic ecosystems. The transport of inorganic and organic components of cattle slurry to watercourses is a major concern, yet little is known about the physical transport mechanisms and associated fluxes and timings of contamination threats. Therefore, the aim of the study was to ascertain the importance of flow pathway partitioning in the transport (fluxes and timing) of dissolved and particulate slurry-derived compounds with implications for off-site contamination. A series of rainfall–runoff and erosion experiments were carried out using the TRACE (Test Rig for Advancing Connectivity Experiments) experimental hillslope facility. The experiments allowed the quantification of the impact of changing slope gradient and rainfall intensity on nutrient transport from cattle slurry applied to the hillslope, via surface, subsurface, and vertical percolated flow pathways, as well as particulate transport from erosion. The dissolved components were traced using a combination of ammonium (NH<sub>4</sub><sup>+</sup>) and fluorescence analysis, while the particulate fraction was traced using organic biomarkers, 5<i>β</i>-stanols. Results showed that rainfall events which produced flashy hydrological responses, resulting in large quantities of surface runoff, were likely to move sediment and also flush dissolved components of slurry-derived material from the slope, increasing the contamination risk. Rainfall events which produced slower hydrological responses were dominated by vertical percolated flows removing less sediment-associated material, but produced leachate which could contaminate deeper soil layers, and potentially groundwater, over a more prolonged period. Overall, this research provides new insights into the partitioning of slurry-derived material when applied to an unvegetated slope and the transport mechanisms by which contamination risks are created

    Supersonic Downflows at the Umbra-Penumbra Boundary of Sunspots

    Full text link
    High resolution spectropolarimetric observations of 3 sunspots taken with Hinode demonstrate the existence of supersonic downflows at or close to the umbra-penumbra boundary which have not been reported before. These downflows are confined to large patches, usually encompassing bright penumbral filaments, and have lifetimes of more than 14 hr. The presence of strong downflows in the center-side penumbra near the umbra rules out an association with the Evershed flow. Chromospheric filtergrams acquired close to the time of the spectropolarimetric measurements show large, strong, and long-lived brightenings in the neighborhood of the downflows. The photospheric intensity also exhibit persistent brightenings comparable to the quiet Sun. Interestingly, the orientation of the penumbral filaments at the site of the downflows is similar to that resulting from the reconnection process described by Ryutova et al. The existence of such downflows in the inner penumbra represents a challenge for numerical models of sunspots because they have to explain them in terms of physical processes likely affecting the chromosphere.Comment: Accepted for publication in Ap

    Impact of modern cattle feeding practices on milk fatty acid stable carbon isotope compositions emphasise the need for caution in selecting reference animal tissues and products for archaeological investigations

    Get PDF
    Degraded animal fats, characterised by the presence of palmitic (C16:0) and stearic (C18:0) fatty acids and related glycerolipids are the most common class of preserved lipids in organic residues trapped in the porous clay matrix of archaeological ceramic vessels. The ubiquitous presence of fatty acids in animal fats and plant oils precludes identification of fat types by the solely molecular composition of residues. Hence, animal fats are identified by determining their fatty acyl lipid distributions and stable carbon (δ13C) values allowing distinctions to be drawn between non-ruminant and ruminant, and dairy and adipose fats. The Δ13C proxy (= δ13C18:0 - δ13C16:0) originally proposed in the 1990s by Evershed and co-workers was based on modern reference fats sampled from animals raised in Britain on C3 plant diets. Further analyses on adipose and dairy fats from ruminants grazing in a wide range of isoscapes have shown that the Δ13C proxy can be applied in mixed C3/C4 environments, such as in Africa. Here we show, however, through the investigation of milk fats, how the Δ13C proxy can be perturbed when animals are reared on modern diets, specifically maize silage. It is thus shown that extreme care has to be taken when choosing modern reference fats for archaeological studies, and especially that insecurely sourced animal fats should be excluded from such databases
    • …
    corecore