1,328 research outputs found

    Measurement of the separation between atoms beyond diffraction limit

    Full text link
    Precision measurement of small separations between two atoms or molecules has been of interest since the early days of science. Here, we discuss a scheme which yields spatial information on a system of two identical atoms placed in a standing wave laser field. The information is extracted from the collective resonance fluorescence spectrum, relying entirely on far-field imaging techniques. Both the interatomic separation and the positions of the two particles can be measured with fractional-wavelength precision over a wide range of distances from bout lambda/550 to lambda/2.Comment: v2: Revised version for publicatio

    Microcavities coupled to multilevel atoms

    Full text link
    A three-level atom in the Λ\Lambda-configuration coupled to a microcavity is studied. The two transitions of the atom are assumed couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both, in the strong-coupling and the bad cavity limit. We find that compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.Comment: 14 pages, 9 figure

    Two-mode single-atom laser as a source of entangled light

    Get PDF
    A two-mode single-atom laser is considered, with the aim of generating entanglement in macroscopic light. Two transitions in the four-level gain medium atom independently interact with the two cavity modes, while two other transitions are driven by control laser fields. Atomic relaxation as well as cavity losses are taken into account. We show that this system is a source of macroscopic entangled light over a wide range of control parameters and initial states of the cavity field

    Nuclear quantum optics with x-ray laser pulses

    Full text link
    The direct interaction of nuclei with super-intense laser fields is studied. We show that present and upcoming high-frequency laser facilities, especially together with a moderate acceleration of the target nuclei, do allow for resonant laser-nucleus interaction. These direct interactions may be utilized for the optical measurement of nuclear properties such as the transition frequency and the dipole moment, thus opening the field of nuclear quantum optics. As ultimate goal, one may hope that direct laser-nucleus interactions could become a versatile tool to enhance preparation, control and detection in nuclear physics.Comment: 5 pages, 3 eps figures, revised versio

    Conductance of 1D quantum wires with anomalous electron-wavefunction localization

    Full text link
    We study the statistics of the conductance gg through one-dimensional disordered systems where electron wavefunctions decay spatially as ψexp(λrα)|\psi| \sim \exp (-\lambda r^{\alpha}) for 0<α<10 <\alpha <1, λ\lambda being a constant. In contrast to the conventional Anderson localization where ψexp(λr)|\psi| \sim \exp (-\lambda r) and the conductance statistics is determined by a single parameter: the mean free path, here we show that when the wave function is anomalously localized (α<1\alpha <1) the full statistics of the conductance is determined by the average and the power α\alpha. Our theoretical predictions are verified numerically by using a random hopping tight-binding model at zero energy, where due to the presence of chiral symmetry in the lattice there exists anomalous localization; this case corresponds to the particular value α=1/2\alpha =1/2. To test our theory for other values of α\alpha, we introduce a statistical model for the random hopping in the tight binding Hamiltonian.Comment: 6 pages, 8 figures. Few changes in the presentation and references updated. Published in PRB, Phys. Rev. B 85, 235450 (2012

    Light propagation through closed-loop atomic media beyond the multiphoton resonance condition

    Get PDF
    The light propagation of a probe field pulse in a four-level double-lambda type system driven by laser fields that form a closed interaction loop is studied. Due to the finite frequency width of the probe pulse, a time-independent analysis relying on the multiphoton resonance assumption is insufficient. Thus we apply a Floquet decomposition of the equations of motion to solve the time-dependent problem beyond the multiphoton resonance condition. We find that the various Floquet components can be interpreted in terms of different scattering processes, and that the medium response oscillating in phase with the probe field in general is not phase-dependent. The phase dependence arises from a scattering of the coupling fields into the probe field mode at a frequency which in general differs from the probe field frequency. We thus conclude that in particular for short pulses with a large frequency width, inducing a closed loop interaction contour may not be advantageous, since otherwise the phase-dependent medium response may lead to a distortion of the pulse shape. Finally, using our time-dependent analysis, we demonstrate that both the closed-loop and the non-closed loop configuration allow for sub- and superluminal light propagation with small absorption or even gain. Further, we identify one of the coupling field Rabi frequencies as a control parameter that allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure

    Role of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in the radiation-induced Dna double strand break repair in Hela tumor cell line

    Get PDF
    It is well known that inter-individual differences of radiosensitivity have genetic causes, such as variations in the level of DNA or expression of DNA repair genes. However, differentially expressed genes which could lead to inter-individual differences in the level of DNA damage remain largely unidentified. In our study we have induced knock-out of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in HeLa cell line to clarify the effects of these genes on DNA repair and radiosensitivity

    Quasiclassical magnetotransport in a random array of antidots

    Get PDF
    We study theoretically the magnetoresistance ρxx(B)\rho_{xx}(B) of a two-dimensional electron gas scattered by a random ensemble of impenetrable discs in the presence of a long-range correlated random potential. We believe that this model describes a high-mobility semiconductor heterostructure with a random array of antidots. We show that the interplay of scattering by the two types of disorder generates new behavior of ρxx(B)\rho_{xx}(B) which is absent for only one kind of disorder. We demonstrate that even a weak long-range disorder becomes important with increasing BB. In particular, although ρxx(B)\rho_{xx}(B) vanishes in the limit of large BB when only one type of disorder is present, we show that it keeps growing with increasing BB in the antidot array in the presence of smooth disorder. The reversal of the behavior of ρxx(B)\rho_{xx}(B) is due to a mutual destruction of the quasiclassical localization induced by a strong magnetic field: specifically, the adiabatic localization in the long-range Gaussian disorder is washed out by the scattering on hard discs, whereas the adiabatic drift and related percolation of cyclotron orbits destroys the localization in the dilute system of hard discs. For intermediate magnetic fields in a dilute antidot array, we show the existence of a strong negative magnetoresistance, which leads to a nonmonotonic dependence of ρxx(B)\rho_{xx}(B).Comment: 21 pages, 13 figure

    Group velocity control in the ultraviolet domain via interacting dark-state resonances

    Full text link
    The propagation of a weak probe field in a laser-driven four-level atomic system is investigated. We choose mercury as our model system, where the probe transition is in the ultraviolet region. A high-resolution peak appears in the optical spectra due to the presence of interacting dark resonances. We show that this narrow peak leads to superluminal light propagation with strong absorption, and thus by itself is only of limited interest. But if in addition a weak incoherent pump field is applied to the probe transition, then the peak structure can be changed such that both sub- and superluminal light propagation or a negative group velocity can be achieved without absorption, controlled by the incoherent pumping strength
    corecore