3,108 research outputs found

    Analysis of the effects of baffles on combustion instability

    Get PDF
    An analytical model has been developed for predicting the effects of baffles on combustion instability. This model has been developed by coupling an acoustic analysis of the wave motion within baffled chambers with a model for the oscillatory combustion response of a propellant droplet developed by Heidmann. A computer program was developed for numerical solution of the resultant coupled equations. Diagnostic calculations were made to determine the reasons for the improper prediction. These calculations showed that the chosen method of representing the combustion response was a very poor approximation. At the end of the program, attempts were made to minimize this effect but the model still improperly predicts the stability trends. Therefore, it is recommended that additional analysis be done with an improved approximation

    A Reconnaissance of the Deeper Jamaican Coral Reef Fish Communities

    Get PDF
    A submersible was used to make repetitive dives in Jamaica to depths of 25 m, 50 m, and 100 m. With increasing depth there was a decline in both species and the number of individuals. The territorial damselfish and mixed-species groups of herbivorous fishes were conspicuously absent at 100 m. Few unique species appeared with increasing depth and thus the deep community resembled depauperate versions of the shallower communities. Twelve species were shared between the 3 depths but there was no significant correlation in ranked relative abundance. Thus increasing depth also influenced community organization

    Novel insights into transfer processes in the reaction 16O+208Pb at sub-barrier energies

    Get PDF
    The collision of the doubly-magic nuclei 16^{16}O+208^{208}Pb is a benchmark in nuclear reaction studies. Our new measurements of back-scattered projectile-like fragments at sub-barrier energies show show that transfer of 2 protons (2p2p) is much more probable than α\alpha-particle transfer. 2p2p transfer probabilities are strongly enhanced compared to expectations for the sequential transfer of two uncorrelated protons; at energies around the fusion barrier absolute probabilities for two proton transfer are similar to those for one proton transfer. This strong enhancement indicates strong 2p2p pairing correlations in 16^{16}O, and suggests evidence for the occurrence of a nuclear supercurrent of two-proton Cooper pairs in this reaction, already at energies well below the fusion barrier.Comment: 5 pages, 3 figure

    Effects of Nuclear Structure on Quasi-fission

    Get PDF
    The quasi-fission mechanism hinders fusion of heavy systems because of a mass flow between the reactants, leading to a re-separation of more symmetric fragments in the exit channel. A good understanding of the competition between fusion and quasi-fission mechanisms is expected to be of great help to optimize the formation and study of heavy and superheavy nuclei. Quantum microscopic models, such as the time-dependent Hartree-Fock approach, allow for a treatment of all degrees of freedom associated to the dynamics of each nucleon. This provides a description of the complex reaction mechanisms, such as quasi-fission, with no parameter adjusted on reaction mechanisms. In particular, the role of the deformation and orientation of a heavy target, as well as the entrance channel magicity and isospin are investigated with theoretical and experimental approaches.Comment: Invited talk to NSRT12. To be published in Eur. Phys. J. Web of Con

    A Problematic Set of Two-Loop Self-Energy Corrections

    Get PDF
    We investigate a specific set of two-loop self-energy corrections involving squared decay rates and point out that their interpretation is highly problematic. The corrections cannot be interpreted as radiative energy shifts in the usual sense. Some of the problematic corrections find a natural interpretation as radiative nonresonant corrections to the natural line shape. They cannot uniquely be associated with one and only one atomic level. While the problematic corrections are rather tiny when expressed in units of frequency (a few Hertz for hydrogenic P levels) and do not affect the reliability of quantum electrodynamics at the current level of experimental accuracy, they may be of importance for future experiments. The problems are connected with the limitations of the so-called asymptotic-state approximation which means that atomic in- and out-states in the S-matrix are assumed to have an infinite lifetime.Comment: 12 pages, 3 figures (New J. Phys., in press, submitted 28th May

    Microcavities coupled to multilevel atoms

    Full text link
    A three-level atom in the Λ\Lambda-configuration coupled to a microcavity is studied. The two transitions of the atom are assumed couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both, in the strong-coupling and the bad cavity limit. We find that compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.Comment: 14 pages, 9 figure

    Lamb Shift of Laser-Dressed Atomic States

    Get PDF
    We discuss radiative corrections to an atomic two-level system subject to an intense driving laser field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic bare states which is usually observed in spectroscopic experiments. In the final part, we propose an experimental scheme to measure these corrections based on the incoherent resonance fluorescence spectrum of the driven atom.Comment: 4 pages, 1 figure, submitted for publicatio

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Coherent control in a decoherence-free subspace of a collective multi-level system

    Get PDF
    Decoherence-free subspaces (DFS) in systems of dipole-dipole interacting multi-level atoms are investigated theoretically. It is shown that the collective state space of two dipole-dipole interacting four-level atoms contains a four-dimensional DFS. We describe a method that allows to populate the antisymmetric states of the DFS by means of a laser field, without the need of a field gradient between the two atoms. We identify these antisymmetric states as long-lived entangled states. Further, we show that any single-qubit operation between two states of the DFS can be induced by means of a microwave field. Typical operation times of these qubit rotations can be significantly shorter than for a nuclear spin system.Comment: 15 pages, 11 figure
    • …
    corecore