17 research outputs found

    Photogeneration Quantum Yield and Character of Free Charges and Excitons in PbSe Nanorods

    No full text
    Lead selenide (PbSe) nanorods are of interest for applications in infrared LEDs, lasers, and photovoltaics due to the possibility of tuning their band gap from the far- to the near-infrared by decreasing their radius. We study the photogeneration quantum yield and properties of free charges and excitons in PbSe nanorods using a combination of time-resolved transient optical absorption and terahertz spectroscopy. Photoexcitation predominantly leads to the formation of excitons and to a smaller extent to free mobile charges. Theoretical analysis of the exprimental data yields an exciton polarizability of 10-35 C m2 V-1. The sum of the mobilities of a free electron and a hole is found to be close to 100 cm2 V-1 s-1. The high quantum yield of excitons makes PbSe nanorods of interest as a gain material in near-infrared LEDs or lasers. To use PbSe nanorods in photovoltaics, heterojunctions must be realized so that excitons can dissociate into free charges.ChemE/Opto-electronic MaterialsBN/Technici en Analiste

    Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals

    No full text
    Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >1022 cm-3 to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li+). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li+) or leads to permanent changes in doping density (for Cu+). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (Eg = 2.0 eV, hole density 1022 cm-3, strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (Eg = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu+ ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu2S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm â145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows.ChemE/Opto-electronic MaterialsBN/Technici en Analiste

    Cryo-EM structure of gas vesicles for buoyancy-controlled motility

    No full text
    Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Ã… cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.BN/Arjen Jakobi LabBN/BionanoscienceImPhys/Maresca groupBN/AfdelingsbureauImPhys/Medical Imagin

    Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes

    No full text
    Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.BN/Arjen Jakobi LabBN/Technici en Analiste

    On the Stability of Permanent Electrochemical Doping of Quantum Dot, Fullerene, and Conductive Polymer Films in Frozen Electrolytes for Use in Semiconductor Devices

    No full text
    Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to be stabilized to avoid unintentional relaxation back to the intrinsic state. Here, we investigate methods to increase the stability of electrochemically injected charges in thin films of a wide variety of semiconductor materials, namely inorganic semiconductors (ZnO NCs, CdSe NCs, and CdSe/CdS core/shell NCs) and organic semiconductors (P3DT, PCBM, and C60). We show that by charging the semiconductors at elevated temperatures in solvents with melting points above room temperature, the charge stability at room temperature increases greatly, from seconds to days. At reduced temperature (-75 °C when using succinonitrile as electrolyte solvent) the injected charge becomes entirely stable on the time scale of our experiments (up to several days). Other high melting point solvents such as dimethyl sulfone, ethylene carbonate, and poly(ethylene glycol) (PEG) also offer increased charge stability at room temperature. Especially the use of PEG increases the room temperature charge stability by several orders of magnitude compared to using acetonitrile. We discuss how this improvement of the charge stability is related to the immobilization of electrolyte ions and impurities. While the electrolyte ions are immobilized, conductivity measurements show that electrons in the semiconductor films remain mobile. These results highlight the potential of using solidified electrolytes to stabilize injected charges, which is a promising step toward making semiconductor devices based on electrochemically doped semiconductor thin films.ChemE/Chemical EngineeringChemE/Opto-electronic MaterialsBN/Technici en Analiste

    Charge Mobility and Dynamics in Spin-Crossover Nanoparticles Studied by Time-Resolved Microwave Conductivity

    No full text
    We use the electrodeless time-resolved microwave conductivity (TRMC) technique to characterize spin-crossover (SCO) nanoparticles. We show that TRMC is a simple and accurate means for simultaneously assessing the magnetic state of SCO compounds and charge transport information on the nanometer length scale. In the low-spin state from liquid nitrogen temperature up to 360 K the TRMC measurements present two well-defined regimes in the mobility and in the half-life times, in which the former transition temperature TR occurs near 225 K. Below TR, we propose that an activationless regime taking place associated with short lifetimes of the charge carriers points at the presence of shallow-trap states. Above TR, these states are thermally released, yielding a thermally activated hopping regime where longer hops increase the mobility and, concomitantly, the barrier energy. The activation energy could originate not only from intricate contributions such as polaronic self-localizations but also from dynamic disorder due to phonons and/or thermal fluctuations of SCO moieties.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QN/van der Zant LabBN/Technici en Analiste

    Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids

    No full text
    Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs >1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The threshold can, however, be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs, we achieve quantitative control over the gain threshold. We obtain stable and reversible doping of more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ∼1 × 10-5 excitons per QD. These results demonstrate a high level of control over the gain threshold in doped QD solids, opening a new route for the creation of cheap, solution-processable, low-threshold QD lasers. ChemE/Opto-electronic MaterialsBN/Technici en Analiste

    Nucleation and Growth of Bipyramidal Yb:LiYF4 Nanocrystals─Growing Up in a Hot Environment

    No full text
    Lanthanide-doped LiYF4 (Ln:YLF) is commonly used for a broad variety of optical applications, such as lasing, photon upconversion and optical refrigeration. When synthesized as nanocrystals (NCs), this material is also of interest for biological applications and fundamental physical studies. Until now, it was unclear how Ln:YLF NCs grow from their ionic precursors into tetragonal NCs with a well-defined, bipyramidal shape and uniform dopant distribution. Here, we study the nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF), as a template for general Ln:YLF NC syntheses. We show that the formation of bipyramidal Yb:YLF NCs is a multistep process starting with the formation of amorphous Yb:YLF spheres. Over time, these spheres grow via Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLF NCs. We further show that prolonged heating of the NCs results in the degradation of the NCs, observed by the presence of large LiF cubes and small, irregular Yb:YLF NCs. Due to the similarity in chemical nature of all lanthanide ions our work sheds light on the formation stages of Ln:YLF NCs in general.ChemE/Opto-electronic MaterialsBN/Afdelingsburea

    Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics behind It

    Get PDF
    Colloidal nanoplatelets (NPLs) are promising materials for lasing applications. The properties are usually discussed in the framework of 2D materials, where strong excitonic effects dominate the optical properties near the band edge. At the same time, NPLs have finite lateral dimensions such that NPLs are not true extended 2D structures. Here we study the photophysics and gain properties of CdSe/CdS/ZnS core-shell-shell NPLs upon electrochemical n doping and optical excitation. Steady-state absorption and PL spectroscopy show that excitonic effects are weaker in core-shell-shell nanoplatelets due to the decreased exciton binding energy. Transient absorption studies reveal a gain threshold of only one excitation per nanoplatelet. Using electrochemical n doping, we observe the complete bleaching of the band edge exciton transitions. Combining electrochemical doping with transient absorption spectroscopy, we demonstrate that the gain threshold is fully removed over a broad spectral range and gain coefficients of several thousand cm-1 are obtained. These doped NPLs are the best performing colloidal nanomaterial gain medium reported to date, with the lowest gain threshold and broadest gain spectrum and gain coefficients that are 4 times higher than in n-doped colloidal quantum dots. The low exciton binding energy due to the CdS and ZnS shells, in combination with the relatively small lateral size of the NPLs, results in excited states that are effectively delocalized over the entire platelet. Core-shell NPLs are thus on the border between strong confinement in QDs and dominant Coulombic effects in 2D materials. We demonstrate that this limit is in effect ideal for optical gain and that it results in an optimal lateral size of the platelets where the gain threshold per nm2 is minimal. ChemE/Opto-electronic MaterialsBN/Afdelingsburea

    Selective antimony reduction initiating the nucleation and growth of InSb quantum dots

    No full text
    Indium antimonide (InSb) quantum dots (QDs) have unique and interesting photophysical properties, but widespread experimentation with InSb QDs is lacking due to the difficulty in synthesizing this material. The key experimental challenge in fabricating InSb QDs is preparing a suitable Sb-precursor in the correct oxidation state that reacts with the In-precursor in a controllable manner. Here, we review and discuss the synthetic strategies for making colloidal InSb QDs and present a new reaction scheme yielding small (∼1 nm diameter) InSb QDs. This was accomplished by employing Sb(NMe2)3 as the antimony precursor and by screening different reducing agents that can selectively reduce it to stibine in situ. The released SbH3, subsequently, reacts with In carboxylate to form small InSb clusters. The absorption features are moderately tunable (from 400 nm to 660 nm) by the amount and rate of reductant addition as well as the temperature of injection and subsequent annealing. Optical properties were probed with transient absorption spectroscopy and show complex time and spectral dependencies.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.ChemE/Opto-electronic MaterialsBN/Technici en AnalistenQN/van der Zant La
    corecore