71 research outputs found

    Rapid recovery following short-term acoustic disturbance in two fish species

    Get PDF
    ArticleNoise from human activities is known to impact organisms in a variety of taxa, but most experimental studies on the behavioural effects of noise have focused on examining responses associated with the period of actual exposure. Unlike most pollutants, acoustic noise is generally short-lived, usually dissipating quickly after the source is turned off or leaves the area. In a series of experiments, we use established experimental paradigms to examine how fish behaviour and physiology are affected, both during short-term (2 min) exposure to playback of recordings of anthropogenic noise sources and in the immediate aftermath of noise exposure. We considered the anti-predator response and ventilation rate of juvenile European eels (Anguilla anguilla), and ventilation rate of juvenile European seabass (Dicentrarchus labrax). As previously found, additional-noise exposure decreased eel anti-predator responses, increased startle latency and increased ventilation rate relative to ambient-noise-exposed controls. Our results show for the first time that those effects quickly dissipated; eels showed rapid recovery of startle responses and startle latency, and rapid albeit incomplete recovery of ventilation rate in the 2 min after noise cessation. Seabass in both laboratory and open-water conditions showed an increased ventilation rate during playback of additional noise compared to ambient conditions. However, within 2 min of noise cessation, ventilation rate showed complete recovery to levels equivalent to ambient-exposed control individuals. Care should be taken in generalizing these rapid-recovery results, as individuals might have accrued other costs during noise exposure and other species might show different recovery times. Nonetheless, our results from two different fish species provide tentative cause for optimism concerning recovery following short-duration noise exposure, and suggest that considering periods following noise exposures could be important for mitigation and management decisions.DefraNER

    Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins

    Get PDF
    Selenof (15-kDa selenoprotein; Sep15) is an endoplasmic reticulum (ER)-resident thioredoxin-like oxidoreductase that occurs in a complex with UDPglucose: glycoprotein glucosyltransferase. We found that Selenof deficiency in mice leads to elevated levels of non-functional circulating plasma immunoglobulins and increased secretion of IgM during in vitro splenic B cell differentiation. However, Selenof knockout animals show neither enhanced bacterial killing capacity nor antigen-induced systemic IgM activity, suggesting that excess immunoglobulins are not functional. In addition, ER-to-Golgi transport of a target glycoprotein was delayed in Selenof knockout embryonic fibroblasts, and proteomic analyses revealed that Selenof deficiency is primarily associated with antigen presentation and ER-to-Golgi transport. Together, the data suggest that Selenof functions as a gatekeeper of immunoglobulins and, likely, other client proteins that exit the ER, thereby supporting redox quality control of these proteins

    Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Get PDF
    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time

    Identification of β-Secretase (BACE1) Substrates Using Quantitative Proteomics

    Get PDF
    β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer's disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition

    Comparative mitochondrial proteomics: perspective in human diseases

    Get PDF
    Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets
    corecore