7,054 research outputs found
Contribution of LANDSAT-4 thematic mapper data to geologic exploration
The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas
Geologic exploration: The contribution of LANDSAT-4 thematic mapper data
The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined
Identification of WISE J000100.45+065259.6 as an M8.5+T5 Spectral Binary Candidate
[not part of RNAAS note] We report the discovery of WISE J000100.45+065259.6
as a very low mass star/brown dwarf spectral binary candidate, on the basis of
low resolution near-infrared spectroscopy obtained with IRTF/SpeX.
Decomposition of the spectrum indicates component types of M8.5+T5 with a
predicted = 3.5. As the majority of confirmed spectral binary
candidates to date are very closely-separated systems ( 3 AU;
15~yr), this source may provide mass measurements across the
hydrogen burning limit within the decade.Comment: 3 pages, 1 figure, accepted to Research Notes of the AA
Fatigue crack initiation and small crack growth in several airframe alloys
The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis
Time dependent CP asymmetry in decay to probe the origin of CP violation
Since the CP violation in the system has been investigated up to now only
through processes related to the -- mixing, urgently required is
new way of study for the CP violation and establishing its origin in the
system independent of the mixing process. In this work, we explore the
exclusive decay to obtain the time-dependent CP
asymmetry in decay process in the standard model and the
supersymmetric model. We find that the complex RL and RR mass insertion to the
squark sector in the MSSM can lead to a large CP asymmetry in
decay through the gluino-squark diagrams, which is not predicted in the
Standard Model induced by the -- mixing.Comment: 10 pages, 4 eps figure
Supersymmetry and Gauge Invariance Constraints in a U(1)U(1)-Higgs Superconducting Cosmic String Model
A supersymmetric extension of the -Higgs bosonic
superconducting cosmic string model is considered,and the constraints imposed
upon such a model due to renormalizability, supersymmetry, and gauge invariance
are examined. For a simple model with a single chiral superfield and a
single chiral superfield, the Witten mechanism for bosonic
superconductivity (giving rise to long range gauge fields outside of the
string) does not exist. The simplest model that can accommodate the requisite
interactions requires five chiral supermultiplets. This superconducting cosmic
string solution is investigated.Comment: 17 pages, revtex, no figures; to appear in Phys. Rev.
Golden Ratio Prediction for Solar Neutrino Mixing
It has recently been speculated that the solar neutrino mixing angle is
connected to the golden ratio phi. Two such proposals have been made, cot
theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and
discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group
D_{10}. This symmetry is a natural candidate because the angle in the
expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the
exterior angle of a decagon and D_{10} is its rotational symmetry group. We
also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio
The unphysical nature of "Warp Drive"
We will apply the quantum inequality type restrictions to Alcubierre's warp
drive metric on a scale in which a local region of spacetime can be considered
``flat''. These are inequalities that restrict the magnitude and extent of the
negative energy which is needed to form the warp drive metric. From this we are
able to place limits on the parameters of the ``Warp Bubble''. It will be shown
that the bubble wall thickness is on the order of only a few hundred Planck
lengths. Then we will show that the total integrated energy density needed to
maintain the warp metric with such thin walls is physically unattainable.Comment: 11 pages, 3 figures, latex. This revision corrects a typographical
sign error in Eq. (3
Chiral Vortons and Cosmological Constraints on Particle Physics
We investigate the cosmological consequences of particle physics theories
that admit stable loops of current-carrying string - vortons. In particular, we
consider chiral theories where a single fermion zero mode is excited in the
string core, such as those arising in supersymmetric theories with a D-term.
The resulting vortons formed in such theories are expected to be more stable
than their non-chiral cousins. General symmetry breaking schemes are considered
in which strings formed at one symmetry breaking scale become current-carrying
at a subsequent phase transition. The vorton abundance is estimated and
constraints placed on the underlying particle physics theories from
cosmological observations. Our constraints on the chiral theory are
considerably more stringent than the previous estimates for more general
theories.Comment: minor corrections made. This version will appear in PR
- …