787 research outputs found
Some remarks on a new exotic spacetime for time travel by free fall
This work is essentially a review of a new spacetime model with closed causal
curves, recently presented in another paper (Class. Quantum Grav.
\textbf{35}(16) (2018), 165003). The spacetime at issue is topologically
trivial, free of curvature singularities, and even time and space orientable.
Besides summarizing previous results on causal geodesics, tidal accelerations
and violations of the energy conditions, here redshift/blueshift effects and
the Hawking-Ellis classification of the stress-energy tensor are examined.Comment: 17 pages, 9 figures. Submitted as a contribution to the proceedings
of "DOMOSCHOOL - International Alpine School of Mathematics and Physics,
Domodossola 2018". Possible text overlaps with my previous work
arXiv:1803.08214, of which this is essentially a review. Additional results
concerning redshift/blueshift effects and the classification of the
stress-energy tensor are presented her
When Anomaly Mediation is UV Sensitive
Despite its successes---such as solving the supersymmetric flavor
problem---anomaly mediated supersymmetry breaking is untenable because of its
prediction of tachyonic sleptons. An appealing solution to this problem was
proposed by Pomarol and Rattazzi where a threshold controlled by a light field
deflects the anomaly mediated supersymmetry breaking trajectory, thus evading
tachyonic sleptons. In this paper we examine an alternate class of deflection
models where the non-supersymmetric threshold is accompanied by a heavy,
instead of light, singlet. The low energy form of this model is the so-called
extended anomaly mediation proposed by Nelson and Weiner, but with potential
for a much higher deflection threshold. The existence of this high deflection
threshold implies that the space of anomaly mediated supersymmetry breaking
deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP
Cycle-centrality in complex networks
Networks are versatile representations of the interactions between entities
in complex systems. Cycles on such networks represent feedback processes which
play a central role in system dynamics. In this work, we introduce a measure of
the importance of any individual cycle, as the fraction of the total
information flow of the network passing through the cycle. This measure is
computationally cheap, numerically well-conditioned, induces a centrality
measure on arbitrary subgraphs and reduces to the eigenvector centrality on
vertices. We demonstrate that this measure accurately reflects the impact of
events on strategic ensembles of economic sectors, notably in the US economy.
As a second example, we show that in the protein-interaction network of the
plant Arabidopsis thaliana, a model based on cycle-centrality better accounts
for pathogen activity than the state-of-art one. This translates into
pathogen-targeted-proteins being concentrated in a small number of triads with
high cycle-centrality. Algorithms for computing the centrality of cycles and
subgraphs are available for download
The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICP0
Cellular restriction factors responding to herpesvirus infection include the ND10 components PML, Sp100 and hDaxx. During the initial stages of HSV-1 infection, novel sub-nuclear structures containing these ND10 proteins form in association with incoming viral genomes. We report that several cellular DNA damage response proteins also relocate to sites associated with incoming viral genomes where they contribute to the cellular front line defense. We show that recruitment of DNA repair proteins to these sites is independent of ND10 components, and instead is coordinated by the cellular ubiquitin ligases RNF8 and RNF168. The viral protein ICP0 targets RNF8 and RNF168 for degradation, thereby preventing the deposition of repressive ubiquitin marks and counteracting this repair protein recruitment. This study highlights important parallels between recognition of cellular DNA damage and recognition of viral genomes, and adds RNF8 and RNF168 to the list of factors contributing to the intrinsic antiviral defense against herpesvirus infection
A novel cardiovascular magnetic resonance risk score for predicting mortality following surgical aortic valve replacement
The increasing prevalence of patients with aortic stenosis worldwide highlights a clinical need for improved and accurate prediction of clinical outcomes following surgery. We investigated patient demographic and cardiovascular magnetic resonance (CMR) characteristics to formulate a dedicated risk score estimating long-term survival following surgery. We recruited consecutive patients undergoing CMR with gadolinium administration prior to surgical aortic valve replacement from 2003 to 2016 in two UK centres. The outcome was overall mortality. A total of 250 patients were included (68 ± 12 years, male 185 (60%), with pre-operative mean aortic valve area 0.93 ± 0.32cm2, LVEF 62 ± 17%) and followed for 6.0 ± 3.3 years. Sixty-one deaths occurred, with 10-year mortality of 23.6%. Multivariable analysis showed that increasing age (HR 1.04, P = 0.005), use of antiplatelet therapy (HR 0.54, P = 0.027), presence of infarction or midwall late gadolinium enhancement (HR 1.52 and HR 2.14 respectively, combined P = 0.12), higher indexed left ventricular stroke volume (HR 0.98, P = 0.043) and higher left atrial ejection fraction (HR 0.98, P = 0.083) associated with mortality and developed a risk score with good discrimination. This is the first dedicated risk prediction score for patients with aortic stenosis undergoing surgical aortic valve replacement providing an individualised estimate for overall mortality. This model can help clinicians individualising medical and surgical care.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00930735 and ClinicalTrials.gov Identifier: NCT01755936
Disruption of PML Nuclear Bodies Is Mediated by ORF61 SUMO-Interacting Motifs and Required for Varicella-Zoster Virus Pathogenesis in Skin
Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier
A centrality measure for cycles and subgraphs II
In a recent work we introduced a measure of importance for groups of vertices in a complex network. This centrality for groups is always between 0 and 1 and induces the eigenvector centrality over vertices. Furthermore, its value over any group is the fraction of all network flows intercepted by this group. Here we provide the rigorous mathematical constructions underpinning these results via a semi-commutative extension of a number theoretic sieve. We then established further relations between the eigenvector centrality and the centrality proposed here, showing that the latter is a proper extension of the former to groups of nodes. We finish by comparing the centrality proposed here with the notion of group-centrality introduced by Everett and Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we demonstrate that the centrality is able to distinguish protein complexe
The Herpesvirus Associated Ubiquitin Specific Protease, USP7, Is a Negative Regulator of PML Proteins and PML Nuclear Bodies
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity
Measurements on the reality of the wavefunction
Quantum mechanics is an outstandingly successful description of nature,
underpinning fields from biology through chemistry to physics. At its heart is
the quantum wavefunction, the central tool for describing quantum systems. Yet
it is still unclear what the wavefunction actually is: does it merely represent
our limited knowledge of a system, or is it an element of reality? Recent no-go
theorems argued that if there was any underlying reality to start with, the
wavefunction must be real. However, that conclusion relied on debatable
assumptions, without which a partial knowledge interpretation can be maintained
to some extent. A different approach is to impose bounds on the degree to which
knowledge interpretations can explain quantum phenomena, such as why we cannot
perfectly distinguish non-orthogonal quantum states. Here we experimentally
test this approach with single photons. We find that no knowledge
interpretation can fully explain the indistinguishability of non-orthogonal
quantum states in three and four dimensions. Assuming that some underlying
reality exists, our results strengthen the view that the entire wavefunction
should be real. The only alternative is to adopt more unorthodox concepts such
as backwards-in-time causation, or to completely abandon any notion of
objective reality.Comment: 7 pages, 4 figure
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
- …