1,031 research outputs found

    An Ensemble Kalman-Particle Predictor-Corrector Filter for Non-Gaussian Data Assimilation

    Full text link
    An Ensemble Kalman Filter (EnKF, the predictor) is used make a large change in the state, followed by a Particle Filer (PF, the corrector) which assigns importance weights to describe non-Gaussian distribution. The weights are obtained by nonparametric density estimation. It is demonstrated on several numerical examples that the new predictor-corrector filter combines the advantages of the EnKF and the PF and that it is suitable for high dimensional states which are discretizations of solutions of partial differential equations.Comment: ICCS 2009, to appear; 9 pages; minor edit

    Fast Ensemble Smoothing

    Full text link
    Smoothing is essential to many oceanographic, meteorological and hydrological applications. The interval smoothing problem updates all desired states within a time interval using all available observations. The fixed-lag smoothing problem updates only a fixed number of states prior to the observation at current time. The fixed-lag smoothing problem is, in general, thought to be computationally faster than a fixed-interval smoother, and can be an appropriate approximation for long interval-smoothing problems. In this paper, we use an ensemble-based approach to fixed-interval and fixed-lag smoothing, and synthesize two algorithms. The first algorithm produces a linear time solution to the interval smoothing problem with a fixed factor, and the second one produces a fixed-lag solution that is independent of the lag length. Identical-twin experiments conducted with the Lorenz-95 model show that for lag lengths approximately equal to the error doubling time, or for long intervals the proposed methods can provide significant computational savings. These results suggest that ensemble methods yield both fixed-interval and fixed-lag smoothing solutions that cost little additional effort over filtering and model propagation, in the sense that in practical ensemble application the additional increment is a small fraction of either filtering or model propagation costs. We also show that fixed-interval smoothing can perform as fast as fixed-lag smoothing and may be advantageous when memory is not an issue

    Morphing Ensemble Kalman Filters

    Full text link
    A new type of ensemble filter is proposed, which combines an ensemble Kalman filter (EnKF) with the ideas of morphing and registration from image processing. This results in filters suitable for nonlinear problems whose solutions exhibit moving coherent features, such as thin interfaces in wildfire modeling. The ensemble members are represented as the composition of one common state with a spatial transformation, called registration mapping, plus a residual. A fully automatic registration method is used that requires only gridded data, so the features in the model state do not need to be identified by the user. The morphing EnKF operates on a transformed state consisting of the registration mapping and the residual. Essentially, the morphing EnKF uses intermediate states obtained by morphing instead of linear combinations of the states.Comment: 17 pages, 7 figures. Added DDDAS references to the introductio

    On dimension reduction in Gaussian filters

    Full text link
    A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen-Loeve expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. In this paper, we extend the concept of a priori dimension reduction to non-stationary inverse problems, in which the goal is to sequentially infer the state of a dynamical system. Our approach proceeds in an offline-online fashion. We first identify a low-dimensional subspace in the state space before solving the inverse problem (the offline phase), using either the method of "snapshots" or regularized covariance estimation. Then this subspace is used to reduce the computational complexity of various filtering algorithms - including the Kalman filter, extended Kalman filter, and ensemble Kalman filter - within a novel subspace-constrained Bayesian prediction-and-update procedure (the online phase). We demonstrate the performance of our new dimension reduction approach on various numerical examples. In some test cases, our approach reduces the dimensionality of the original problem by orders of magnitude and yields up to two orders of magnitude in computational savings

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A

    Parameter Identification in a Probabilistic Setting

    Get PDF
    Parameter identification problems are formulated in a probabilistic language, where the randomness reflects the uncertainty about the knowledge of the true values. This setting allows conceptually easily to incorporate new information, e.g. through a measurement, by connecting it to Bayes's theorem. The unknown quantity is modelled as a (may be high-dimensional) random variable. Such a description has two constituents, the measurable function and the measure. One group of methods is identified as updating the measure, the other group changes the measurable function. We connect both groups with the relatively recent methods of functional approximation of stochastic problems, and introduce especially in combination with the second group of methods a new procedure which does not need any sampling, hence works completely deterministically. It also seems to be the fastest and more reliable when compared with other methods. We show by example that it also works for highly nonlinear non-smooth problems with non-Gaussian measures.Comment: 29 pages, 16 figure

    Variational data assimilation for the initial-value dynamo problem

    No full text
    The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries

    Inverse Problems in a Bayesian Setting

    Full text link
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) --- the propagation of uncertainty through a computational (forward) model --- are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504

    Impact of HPV-associated p16-expression on radiotherapy outcome in advanced oropharynx and non-oropharynx cancer

    Get PDF
    AbstractBackground and purposeHPV is found in head and neck cancer from all sites with a higher prevalence in oropharynx cancer (OPC) compared to non-OPC. HPV/p16-status has a significant impact on radiotherapy (RT) outcome in advanced OPC, but less is known about the influence in non-OPC. We analyzed HPV-associated p16-expression in a cohort of patients with stage III–IV pharynx and larynx cancer treated with primary, curatively intended (chemo-)RT, aiming to test the hypothesis that the impact of HPV/p16 also extends to tumors of non-oropharyngeal origin.Material and methods1294 patients enrolled in previously conducted DAHANCA-trials between 1992 and 2012 were identified. Tumors were evaluated by p16-immunohistochemistry and classified as positive in case of staining in >70% of tumors cells.ResultsThirty-eight percent (490/1294) of the tumors were p16-positive with a significantly higher frequency in OPC (425/815) than in non-OPC (65/479), p<.0001. In OPC p16-positivity significantly improved loco-regional control (LRC) (adjusted HR [95% CI]: 0.43 [0.32–0.57]), event-free survival (EFS) (HR 0.44 [0.35–0.56]), and overall survival (OS) (HR: 0.38 [0.29–0.49]), respectively, compared with p16-negativity. In non-OPC no prognostic impact of p16-status was found for either endpoint: LRC (HR: 1.13 [0.75–1.70]), EFS (HR: 1.06 [0.76–1.47]), and OS (HR: 0.82 [0.59–1.16]).ConclusionsThe independent influence of HPV-associated p16-expression in advanced OPC treated with primary RT was confirmed. However, RT-outcome in the group of non-OPC did not differ by tumor p16-status, indicating that the prognostic impact may be restricted to OPC only
    • …
    corecore