233 research outputs found

    The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion.

    Get PDF
    Cell invasion allows cells to migrate across compartment boundaries formed by basement membranes. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. Anchor cell (AC) invasion in C. elegans is an excellent in vivo model to study the regulation of cell invasion during development. Here, we have examined the function of egl-43, the homolog of the human Evi1 proto-oncogene (also called MECOM), in the invading AC. egl-43 plays a dual role in this process, firstly by imposing a G1 cell cycle arrest to prevent AC proliferation, and secondly, by activating pro-invasive gene expression. We have identified the AP-1 transcription factor fos-1 and the Notch homolog lin-12 as critical egl-43 targets. A positive feedback loop between fos-1 and egl-43 induces pro-invasive gene expression in the AC, while repression of lin-12 Notch expression by egl-43 ensures the G1 cell cycle arrest necessary for invasion. Reducing lin-12 levels in egl-43 depleted animals restored the G1 arrest, while hyperactivation of lin-12 signaling in the differentiated AC was sufficient to induce proliferation. Taken together, our data have identified egl-43 Evi1 as an important factor coordinating cell invasion with cell cycle arrest

    A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans

    Full text link
    Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype

    The clinically led worforcE and activity redesign (CLEAR) programme: a novel data-driven healthcare improvement methodology

    Get PDF
    Background: The NHS is facing substantial pressures to recover from the COVID-19 pandemic. Optimising workforce modelling is a fundamental component of the recovery plan. The Clinically Lead workforcE and Activity Redesign (CLEAR) programme is a unique methodology that trains clinicians to redesign services, building intrinsic capacity and capability, optimising patient care and minimising the need for costly external consultancy. This paper describes the CLEAR methodology and the evaluation of previous CLEAR projects, including the return on investment. Methods: CLEAR is a work-based learning programme that combines qualitative techniques with data analytics to build innovations and new models of care. It has four unique stages: (1) Clinical engagement- used to gather rich insights from stakeholders and clinicians. (2) Data interrogation- utilising clinical and workforce data for cohort analysis. (3) Innovation- using structured innovation methods to develop new models of care. (4) Recommendations- report writing, impact assessment and presentation of key findings to executive boards. A mixed-methods formative evaluation was carried out on completed projects, which included semi-structured interviews and surveys with CLEAR associates and stakeholders, and a health economic logic model that was developed to link the inputs, processes, outputs and the outcome of CLEAR as well as the potential impacts of the changes identified from the projects. Results: CLEAR provides a more cost-effective delivery of complex change programmes than the alternatives – resulting in a cost saving of £1.90 for every £1 spent independent of implementation success. Results suggest that CLEAR recommendations are more likely to be implemented compared to other complex healthcare interventions because of the levels of clinical engagement and have a potential return on investment of up to £14 over 5 years for every £1 invested. CLEAR appears to have a positive impact on staff retention and wellbeing, the cost of a CLEAR project is covered if one medical consultant remains in post for a year. Conclusions: The unique CLEAR methodology is a clinically effective and cost-effective complex healthcare innovation that optimises workforce and activity design, as well as improving staff retention. Embedding CLEAR methodology in the NHS could have substantial impact on patient care, staff well-being and service provision

    The socioeconomic landscape of the exposome during pregnancy

    Get PDF
    Background: While socioeconomic position (SEP) is consistently related to pregnancy and birth outcome dis-parities, relevant biological mechanisms are manifold, thus necessitating more comprehensive characterization of SEP-exposome associations during pregnancy. Objectives: We implemented an exposomic approach to systematically characterize the socioeconomic landscape of prenatal exposures in a setting where social segregation was less distinct in a hypotheses-generating manner. Methods: We described the correlation structure of 134 prenatal exogenous and endogenous sources (e.g., micronutrients, hormones, immunomodulatory metabolites, environmental pollutants) collected in a diverse, population-representative, urban, high-income longitudinal mother-offspring cohort (N = 1341; 2009-2011). We examined the associations between maternal, paternal, household, and areal level SEP indicators and 134 ex-posures using multiple regressions adjusted for precision variables, as well as potential effect measure modifi-cation by ethnicity and nativity. Finally, we generated summary SEP indices using Multiple Correspondence Analysis to further explore possible curved relationships. Results: Individual and household SEP were associated with anthropometric/adiposity measures, folate, omega-3 fatty acids, insulin-like growth factor-II, fasting glucose, and neopterin, an inflammatory marker. We observed paternal education was more strongly and consistently related to maternal exposures than maternal education. This was most apparent amongst couples discordant on education. Analyses revealed additional non-linear as-sociations between areal composite SEP and particulate matter. Environmental contaminants (e.g., per-and polyfluoroalkyl substances) and micronutrients (e.g., folate and copper) showed opposing associations by ethnicity and nativity, respectively. Discussion: SEP-exposome relationships are complex, non-linear, and context specific. Our findings reinforce the potential role of paternal contributions and context-specific modifiers of associations, such as between ethnicity and maternal diet-related exposures. Despite weak presumed areal clustering of individual exposures in our context, our approach reinforces subtle non-linearities in areal-level exposures.Peer reviewe

    Psychosocial interventions among patients with cancer and their family caregivers in the Sub-Saharan Region: A systematic review

    Get PDF
    Cancer is becoming a public health issue in the Sub-Saharan Africa (SSA). This systematic review aims to synthesise psychosocial interventions and their effects on the health outcomes of adult cancer patients and their family caregivers in SSA. We identified eligible publications in English language from PubMed, Cumulative Index of Nursing and Allied Health Literature Plus with Full Text, Embase, APA PsycInfo, Scopus, and African Index Medicus databases. We included psychosocial interventions targeted adult cancer patients/survivors or their family caregivers in SSA. This review identified five psychosocial interventions from six studies that support adult cancer patients and their family caregivers in SSA. The interventions focused on providing informational, psycho-cognitive, and social support. Three interventions significantly improved quality of life outcomes for cancer patients and their caregivers. Significant gaps exist between the rapidly increasing cancer burdens and the limited psychosocial educational interventions supporting adult cancer patients and their families in SSA. The reviewed studies provide preliminary evidence on development and testing interventions that aim to improve patients’ and caregivers’ quality of life

    Human Epididymis Secretory Protein 4 (HE4) Compromises Cytotoxic Mononuclear Cells via Inducing Dual Specificity Phosphatase 6

    Get PDF
    While selective overexpression of serum clinical biomarker Human epididymis secretory protein 4 (HE4) is indicative of ovarian cancer tumorigenesis, much is still known about the mechanistic role of the HE4 gene or gene product. Here, we examine the role of the secretory glycoprotein HE4 in ovarian cancer immune evasion. Through modified subtractive hybridization analyses of human peripheral blood mononuclear cells (PBMCs), we have characterized gene targets of HE4 and established a preliminary mechanism of HE4-mediated immune failure in ovarian tumors. Dual specificity phosphatase 6 (DUSP6) emerged as the most upregulated gene in PBMCs upon in vitro exposure to HE4. DUSP6 was found to be upregulated in CD8+ cells and CD56+ cells. HE4 exposure reduced Erk1/2 phosphorylation specifically in these cell populations and the effect was erased by co-incubation with a DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI). In co-culture with PBMCs, HE4-silenced SKOV3 human ovarian cancer cells exhibited enhanced proliferation upon exposure to external HE4, while this effect was partially attenuated by adding BCI to the culture. Additionally, the reversal effects of BCI were erased in the co-culture with CD8+ / CD56+ cell deprived PBMCs. Taken together, these findings show that HE4 enhances tumorigenesis of ovarian cancer by compromising cytotoxic CD8+ and CD56+ cells through upregulation of self-produced DUSP6

    Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    Get PDF
    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore