15 research outputs found

    Plasma and cerebrospinal proteomes from childre with cerebral malaria differ from those of children with other encephalopathies

    Get PDF
    Journal article published in The Journal of Infectious DiseasesClinical signs and symptoms of cerebral malaria in children are nonspecific and are seen in other common encephalopathies in malaria-endemic areas. This makes accurate diagnosis difficult in resource-poor settings. Novel malaria-specific diagnostic and prognostic methods are needed. We have used 2 proteomic strategies to identify differentially expressed proteins in plasma and cerebrospinal fluid from children with a diagnosis of cerebral malaria, compared with those with a diagnosis of malaria-slide-negative acute bacterial meningitis and other nonspecific encephalopathies. Here we report the presence of differentially expressed proteins in cerebral malaria in both plasma and cerebrospinal fluid that could be used to better understand pathogenesis and help develop more-specific diagnostic methods. In particular, we report the expression of 2 spectrin proteins that have known Plasmodium falciparum–binding partners involved in the stability of the infected red blood cell, suppressing further invasion and possibly enhancing the red blood cell’s ability to sequester in microvasculature.Clinical signs and symptoms of cerebral malaria in children are nonspecific and are seen in other common encephalopathies in malaria-endemic areas. This makes accurate diagnosis difficult in resource-poor settings. Novel malaria-specific diagnostic and prognostic methods are needed. We have used 2 proteomic strategies to identify differentially expressed proteins in plasma and cerebrospinal fluid from children with a diagnosis of cerebral malaria, compared with those with a diagnosis of malaria-slide-negative acute bacterial meningitis and other nonspecific encephalopathies. Here we report the presence of differentially expressed proteins in cerebral malaria in both plasma and cerebrospinal fluid that could be used to better understand pathogenesis and help develop more-specific diagnostic methods. In particular, we report the expression of 2 spectrin proteins that have known Plasmodium falciparum–binding partners involved in the stability of the infected red blood cell, suppressing further invasion and possibly enhancing the red blood cell’s ability to sequester in microvasculature

    Biomarkers of post-discharge mortality among children with complicated severe acute malnutrition

    Get PDF
    High mortality after discharge from hospital following acute illness has been observed among children with Severe Acute Malnutrition (SAM). However, mechanisms that may be amenable to intervention to reduce risk are unknown. We performed a nested case-control study among HIV-uninfected children aged 2-59 months treated for complicated SAM according to WHO recommendations at four Kenyan hospitals. Blood was drawn from 1778 children when clinically judged stable before discharge from hospital. Cases were children who died within 60 days. Controls were randomly selected children who survived for one year without readmission to hospital. Untargeted proteomics, total protein, cytokines and chemokines, and leptin were assayed in plasma and corresponding biological processes determined. Among 121 cases and 120 controls, increased levels of calprotectin, von Willebrand factor, angiotensinogen, IL8, IL15, IP10, TNF alpha, and decreased levels of leptin, heparin cofactor 2, and serum paraoxonase were associated with mortality after adjusting for possible confounders. Acute phase responses, cellular responses to lipopolysaccharide, neutrophil responses to bacteria, and endothelial responses were enriched among cases. Among apparently clinically stable children with SAM, a sepsis-like profile is associated with subsequent death. This may be due to ongoing bacterial infection, translocated bacterial products or deranged immune response during nutritional recovery

    SARS-CoV-2 seroprevalence in three Kenyan health and demographic surveillance sites, December 2020-May 2021

    Get PDF
    Background Most of the studies that have informed the public health response to the COVID-19 pandemic in Kenya have relied on samples that are not representative of the general population. We conducted population-based serosurveys at three Health and Demographic Surveillance Systems (HDSSs) to determine the cumulative incidence of infection with SARS-CoV-2. Methods We selected random age-stratified population-based samples at HDSSs in Kisumu, Nairobi and Kilifi, in Kenya. Blood samples were collected from participants between 01 Dec 2020 and 27 May 2021. No participant had received a COVID-19 vaccine. We tested for IgG antibodies to SARS-CoV-2 spike protein using ELISA. Locally-validated assay sensitivity and specificity were 93% (95% CI 88–96%) and 99% (95% CI 98–99.5%), respectively. We adjusted prevalence estimates using classical methods and Bayesian modelling to account for the sampling scheme and assay performance. Results We recruited 2,559 individuals from the three HDSS sites, median age (IQR) 27 (10–78) years and 52% were female. Seroprevalence at all three sites rose steadily during the study period. In Kisumu, Nairobi and Kilifi, seroprevalences (95% CI) at the beginning of the study were 36.0% (28.2–44.4%), 32.4% (23.1–42.4%), and 14.5% (9.1–21%), and respectively; at the end they were 42.0% (34.7–50.0%), 50.2% (39.7–61.1%), and 24.7% (17.5–32.6%), respectively. Seroprevalence was substantially lower among children (&lt;16 years) than among adults at all three sites (p≤0.001). Conclusion By May 2021 in three broadly representative populations of unvaccinated individuals in Kenya, seroprevalence of anti-SARS-CoV-2 IgG was 25–50%. There was wide variation in cumulative incidence by location and age. </jats:sec

    T-Cell Responses to the DBLa-Tag, a Short Semi- Conserved Region of the Plasmodium falciparum Membrane Erythrocyte Protein 1

    Get PDF
    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen expressed on mature forms of infected erythrocytes. It is considered an important target of naturally acquired immunity. Despite its extreme sequence heterogeneity, variants of PfEMP1 can be stratified into distinct groups. Group A PfEMP1 have been independently associated with low host immunity and severe disease in several studies and are now of potential interest as vaccine candidates. Although antigen-specific antibodies are considered the main effector mechanism in immunity to malaria, the induction of efficient and long-lasting antibody responses requires CD4+ T-cell help. To date, very little is known about CD4+ T-cell responses to PfEMP1 expressed on clinical isolates. The DBLa-tag is a small region from the DBLa-domain of PfEMP1 that can be amplified with universal primers and is accessible in clinical parasite isolates. We identified the dominant expressed PfEMP1 in 41 individual clinical parasite isolates and expressed the corresponding DBLa-tag as recombinant antigen. Individual DBLa-tags were then used to activate CD4+ T-cells from acute and convalescent blood samples in children who were infected with the respective clinical parasite isolate. Here we show that CD4+ T-cell responses to the homologous DBLa-tag were induced in almost all children during acute malaria and maintained in some for 4 months. Children infected with parasites that dominantly expressed group A-like PfEMP1 were more likely to maintain antigen-specific IFNc-producing CD4+ T-cells than children infected with parasites dominantly expressing other PfEMP1

    Effective supervision of doctoral students in public and population health in Africa: CARTA supervisors’ experiences, challenges and perceived opportunities

    No full text
    The quality and success of postgraduate education largely rely on effective supervision. Since its inception in 2008, the Consortium for Advanced Research Training in Africa (CARTA) has been at the forefront of providing training to both students and supervisors in the field of public and population health. However, there are few studies on supervisors’ perceptions on effective doctoral supervision. We used a mostly descriptive study design to report CARTA-affiliated doctoral supervisors’ reflections and perceptions on doctoral supervision, challenges and opportunities. A total of 77 out of 160 CARTA supervisors’ workshop participants responded to the evaluation. The respondents were affiliated with 10 institutions across Africa. The respondents remarked that effective supervision is a two-way process, involving both supervisor and supervisee’s commitment. Some reported that the requirements for effective supervision included the calibre of the PhD students, structure of the PhD programme, access to research infrastructure and resources, supervision training, multidisciplinary exposure and support. Male supervisors have significantly higher number of self-reported PhD graduates and published articles on Scopus but no difference from the females in h-index. We note both student and systemic challenges that training institutions may pursue to improve doctoral supervision in Africa

    Gating Strategy used to identify T-cell responses.

    No full text
    <p>PBMCs were gated to eliminate doublets and dead. CD3+lymphocytes were identified and gated for CD4+ and CD8+ T-cells. Within each T-cell subset, the proportion of IFNÎł, IL10, IL2, and IL4 producing cells were determined. IFNÎł+IL10+ and IL2+IL4+ double producers were determined by Boolean gating.</p

    CD4+ T-cells responses response to cys2 and non-cys2 DBLα-tags.

    No full text
    <p>Dot plots of the percentage of CD4+ T-cell responses to cys2 and non-cys2 DBLα-tags whether or not they represent homologous or heterologous DBLα-tags during acute malaria or 4 and 16 weeks after the acute attack. Horizontal lines indicate the median.</p
    corecore