303 research outputs found
Neural correlates of intentional and stimulus-driven inhibition: a comparison
People can inhibit an action because of an instruction by an external stimulus, or because of their own internal decision. The similarities and differences between these two forms of inhibition are not well understood. Therefore, in the present study the neural correlates of intentional and stimulus-driven inhibition were tested in the same subjects. Participants performed two inhibition tasks while lying in the scanner: the marble task in which they had to choose for themselves between intentionally acting on, or inhibiting a prepotent response to measure intentional inhibition, and the classical stop signal task in which an external signal triggered the inhibition process. Results showed that intentional inhibition decision processes rely on a neural network that has been documented extensively for stimulus-driven inhibition, including bilateral parietal and lateral prefrontal cortex and pre-supplementary motor area. We also found activation in dorsal frontomedian cortex and left inferior frontal gyrus during intentional inhibition that depended on the history of previous choices. Together, these results indicate that intentional inhibition and stimulus-driven inhibition engage a common inhibition network, but intentional inhibition is also characterized by additional context-dependent neural activation in medial prefrontal cortex
Trust in adolescence:Development, mechanisms and future directions
Trust is the glue of society. While the trust we place in close others is crucial for our wellbeing, trust in strangers is important to fulfill needs that families and friends cannot provide. Adolescence is an important phase for the development of trust in strangers, because the social world of adolescents expands tremendously. We provide an overview of the development of trust in adolescence by reviewing studies that used the trust game, an experimental paradigm to measure trust between dyads during monetary exchange. We start from the notion that trust is a form of social reinforcement learning in which prior beliefs about the trustworthiness of others are continuously updated by new information. Within this framework, development in adolescence is characterized by increasing uncertainty of prior beliefs, a greater tolerance of uncertainty, and a greater tendency to seek and use new information. Accordingly, there is evidence for an increase in initial trust and better adaptation of trust during repeated interactions. Childhood psychological and social-economic adversity may impact this development negatively. To further our understanding of these individual differences, we suggest ways in which the trust game can be enriched to capture trust dilemmas that are relevant to youth with diverse backgrounds.</p
Medial Prefrontal Cortical Thinning Mediates Shifts in Other-Regarding Preferences during Adolescence
Adolescence is a time of significant cortical changes in the ‘social brain’, a set of brain regions involved in sophisticated social inference. However, there is limited evidence linking the structural changes in social brain to development of social behavior. The present study investigated how cortical development of the social brain relates to other-regarding behavior, in the context of fairness concerns. Participants aged between 9 to 23 years old responded to multiple rounds of ultimatum game proposals. The degree to which each participant considers fairness of intention (i.e., intention-based reciprocity) vs. outcome (i.e., egalitarianism) was quantified using economic utility models. We observed a gradual shift in other-regarding preferences from simple rule-based egalitarianism to complex intention-based reciprocity from early childhood to young adulthood. The preference shift was associated with cortical thinning of the dorsomedial prefrontal cortex and posterior temporal cortex. Meta-analytic reverse-inference analysis showed that these regions were involved in social inference. Importantly, the other-regarding preference shift was statistically mediated by cortical thinning in the dorsomedial prefrontal cortex. Together these findings suggest that development of the ability to perform sophisticated other-regarding social inference is associated with the structural changes of specific social brain regions in late adolescence
Longitudinal network re-organization across learning and development
While it is well understood that the brain experiences changes across short-term experience/learning and long-term development, it is unclear how these two mechanisms interact to produce developmental outcomes. Here we test an interactive model of learning and development where certain learning-related changes are constrained by developmental changes in the brain against an alternative development-as-practice model where outcomes are determined primarily by the accumulation of experience regardless of age. Participants (8-29 years) participated in a three-wave, accelerated longitudinal study during which they completed a feedback learning task during an fMRI scan. Adopting a novel longitudinal modeling approach, we probed the unique and moderated effects of learning, experience, and development simultaneously on behavioral performance and network modularity during the task. We found nonlinear patterns of development for both behavior and brain, and that greater experience supported increased learning and network modularity relative to naive subjects. We also found changing brain-behavior relationships across adolescent development, where heightened network modularity predicted improved learning, but only following the transition from adolescence to young adulthood. These results present compelling support for an interactive view of experience and development, where changes in the brain impact behavior in context-specific fashion based on developmental goals
Assessing Empathy across Childhood and Adolescence: Validation of the Empathy Questionnaire for Children and Adolescents (EmQue-CA)
Empathy plays a crucial role in healthy social functioning and in maintaining positive social relationships. In this study, 1250 children and adolescents (10–15 year olds) completed the newly developed Empathy Questionnaire for Children and Adolescents (EmQue-CA) that was tested on reliability, construct validity, convergent validity, and concurrent validity. The EmQue-CA aims to assess empathy using the following scales: affective empathy, cognitive empathy, and intention to comfort. A Principal Components Analysis, which was directly tested with a Confirmatory Factor Analysis, confirmed the proposed three-factor model resulting in 14 final items. Reliability analyses demonstrated high internal consistency of the scales. Furthermore, the scales showed high convergent validity, as they were positively correlated with related scales of the Interpersonal Reactivity Index (Davis, 1983). With regard to concurrent validity, higher empathy was related to more attention to others’ emotions, higher friendship quality, less focus on own affective state, and lower levels of bullying behavior. Taken together, we show that the EmQue-CA is a reliable and valid instrument to measure empathy in typically developing children and adolescents aged 10 and older
Chronic Childhood Peer Rejection is Associated with Heightened Neural Responses to Social Exclusion During Adolescence
This functional Magnetic Resonance Imaging (fMRI) study examined subjective and neural responses to social exclusion in adolescents (age 12-15) who either had a stable accepted (n = 27; 14 males) or a chronic rejected (n = 19; 12 males) status among peers from age 6 to 12. Both groups of adolescents reported similar increases in distress after being excluded in a virtual ball-tossing game (Cyberball), but adolescents with a history of chronic peer rejection showed higher activity in brain regions previously linked to the detection of, and the distress caused by, social exclusion. Specifically, compared with stably accepted adolescents, chronically rejected adolescents displayed: 1) higher activity in the dorsal anterior cingulate cortex (dACC) during social exclusion and 2) higher activity in the dACC and anterior prefrontal cortex when they were incidentally excluded in a social interaction in which they were overall included. These findings demonstrate that chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence, which has implications for understanding the processes through which peer rejection may lead to adverse effects on mental health over time.Pathways through Adolescenc
Developing body estimation in adolescence is associated with neural regions that support self-concept
Both self-concept, the evaluation of who you are, and the physical body undergo changes throughout adolescence. These two processes might affect the development of body image, a complex construct that comprises one's thoughts, feelings, and perception of one's body. This study aims to better understand the development of body image in relation to self-concept development and its neural correlates. Adolescents (aged 11-24) from the longitudinal Leiden Self-Concept study were followed for three consecutive years (NT1 = 160, NT2 = 151, and NT3 = 144). Their body image was measured using a figure rating scale and body dissatisfaction questionnaire. Body estimation was calculated based on figure ratings relative to their actual body mass index (BMI). Additionally, participants evaluated their physical appearance traits in an functional magnetic resonance imaging (fMRI) task. Results revealed that body estimation and body dissatisfaction increased with age. Heightened inferior parietal lobe (IPL) activation during physical self-evaluation was associated with lower body estimation, meaning that the neural network involved in thinking about one's physical traits is more active for individuals who perceive themselves as larger than they are. IPL activity showed continued development during adolescence, suggesting an interaction between neural development and body perception. These findings highlight the complex interplay between affective, perceptual, and biological factors in shaping body image.</p
Temporal discounting for self and friends in adolescence:A fMRI study
Adolescence is characterized by impulsivity but also by increased importance of friendships. This study took the novel perspective of testing temporal discounting in a fMRI task where choices could affect outcomes for 96 adolescents (aged 10–20-years) themselves and their best friend. Decisions either benefitted themselves (i.e., the Self Immediate – Self Delay’ condition) or their friend (i.e., ‘Friend Immediate – Friend Delay’ condition); or juxtaposed rewards for themselves and their friends (i.e., the ‘Self Immediate – Friend Delay’ or ‘Friend Immediate – Self Delay’ conditions). We observed that younger adolescents were more impulsive; and all participants were more impulsive when this was associated with an immediate benefit for friends. Individual differences analyses revealed increased activity in the subgenual anterior cingulate cortex extending in the ventral striatum for immediate relative to delayed reward choices for self. Temporal choices were associated with activity in the prefrontal cortex, parietal cortex, insula, and ventral striatum, but only activity in the right inferior parietal lobe was associated with age. Finally, temporal delay choices for friends relative to self were associated with increased activity in the temporo-parietal junction and precuneus. Overall, this study shows a unique role of the social context in adolescents’ temporal decision making.</p
Better than Expected or as Bad as You Thought? The Neurocognitive Development of Probabilistic Feedback Processing
Learning from feedback lies at the foundation of adaptive behavior. Two prior neuroimaging studies have suggested that there are qualitative differences in how children and adults use feedback by demonstrating that dorsolateral prefrontal cortex (DLPFC) and parietal cortex were more active after negative feedback for adults, but after positive feedback for children. In the current study we used functional magnetic resonance imaging (fMRI) to test whether this difference is related to valence or informative value of the feedback by examining neural responses to negative and positive feedback while applying probabilistic rules. In total, 67 healthy volunteers between ages 8 and 22 participated in the study (8–11 years, n = 18; 13–16 years, n = 27; 18–22 years, n = 22). Behavioral comparisons showed that all participants were able to learn probabilistic rules equally well. DLPFC and dorsal anterior cingulate cortex were more active in younger children following positive feedback and in adults following negative feedback, but only when exploring alternative rules, not when applying the most advantageous rules. These findings suggest that developmental differences in neural responses to feedback are not related to valence per se, but that there is an age-related change in processing learning signals with different informative value
- …