30 research outputs found

    Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay

    Get PDF
    Background: Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Methodology/Principal Findings: Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Conclusions/Significance: Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system

    The Association of Cytokines with Severe Dengue in Children

    Get PDF
    Background: Dengue virus infection is a major public health problem. A hypothesis put forward for severe dengue is the cytokine storm, a sudden increase in cytokines that induces vascular permeability. Previous studies and our recent meta-analysis showed that IL-6, IL-8, IFNγ, TNFα, VEGF-A and VCAM-1 are associated with dengue shock syndrome. Therefore, in this study we aim to validate the association of these cytokines with severe dengue. Methods & Findings: In a hospital based-case control study in Vietnam, children with dengue fever, other febrile illness and healthy controls were recruited. Dengue virus infection was confirmed by several diagnostic tests. Multiplex immunoassay using Luminex technology was used to measure cytokines simultaneously. A positive association with dengue shock syndrome was found for VCAM-1, whereas a negative association was found for IFNγ. Furthermore, multivariate logistic analysis also showed that VCAM-1 and IFNγ were independently correlated with dengue shock syndrome. Conclusion: IFNγ and VCAM-1 were associated with dengue shock syndrome, although their role in the severe dengue pathogenesis remains unclear. Additional studies are required to shed further light on the function of these cytokines in severe dengue

    Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Get PDF
    BackgroundWe previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information.Methodology/Principal FindingsHere, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10?6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition.ConclusionsThe results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted

    Host Determinants of Reinfection with Schistosomes in Humans: A Systematic Review and Meta-analysis

    Get PDF
    Background: Schistosomiasis is still a major public health burden in the tropics and subtropics. Although there is an effective chemotherapy (Praziquantel) for this disease, reinfection occurs rapidly after mass drug administration (MDA). Because the entire population do not get reinfected at the same rate, it is possible that host factors may play a dominant role in determining resistance or susceptibility to reinfection with schistosomes. Here, we systematically reviewed and meta-analyzed studies that reported associations between reinfection with the principal human-infecting species (S. mansoni, S. japonicum and S. haematobium) and host socio-demographic, epidemiological, immunological and genetic factors.Methodology/Principal Findings: PubMed, Scopus, Google Scholar, Cochrane Review Library and African Journals Online public databases were searched in October 2013 to retrieve studies assessing association of host factors with reinfection with schistosomes. Meta-analysis was performed to generate pooled odds ratios and standardized mean differences as overall effect estimates for dichotomous and continuous variables, respectively. Quality assessment of included studies, heterogeneity between studies and publication bias were also assessed. Out of the initial 2739 records, 109 studies were included in the analyses, of which only 32 studies with 37 data sets were eligible for quantitative data synthesis. Among several host factors identified, strong positive association was found with age and pre-treatment intensity, and only slightly for gender. These factors are major determinants of exposure and disease transmission. Significant positive association was found with anti-SWA IgG4 level, and a negative overall effect for association with IgE levels. This reconfirmed the concept that IgE/IgG4 balance is a major determinant of protective immunity against schistosomiasis. Other identified determinants were reported by a small number of studies to enable interpretation.Conclusions: Our data contribute to the understanding of host-parasite interaction as it affects reinfection, and is a potential tool to guide planning and tailoring of community interventions to target high-risk groups

    Association of younger age (<10 years old) with reinfection with schistosomes.

    No full text
    <p>Presented here is the meta-analysis forest plot showing the pooled odds ratio and the corresponding 95% CI, subgroup analysis by species, and assessment of heterogeneity among studies. There was a strong statistically significant positive association between younger age (<10 years old) and reinfection with schistosomes.</p

    Host determinants of reinfection with schistosomes identified in this study.

    No full text
    <p>NB: No = Number of included studies; OR = odds ratio; SMD = standardized mean difference; <i>p</i>-val. = <i>p</i>-value; PTI = Pre-treatment intensity of infection; Exposure = Exposure rate; HTA = High transmission area; SWA = Schistosoma adult worm antigen; SEA = Schistosoma egg antigen.</p><p>Host determinants of reinfection with schistosomes identified in this study.</p
    corecore