43,411 research outputs found

    Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models

    Get PDF
    One-dimensional hard rod gases are explicitly constructed as the limits of discrete systems: exclusion processes involving particles of arbitrary length. Those continuum many-body systems in general do not exhibit the same hydrodynamic properties as the underlying discrete models. Considering as examples a hard rod gas with additional long-range interaction and the generalized asymmetric exclusion process for extended particles (â„“\ell-ASEP), it is shown how a correspondence between continuous and discrete systems must be established instead. This opens up a new possibility to exactly predict the hydrodynamic behaviour of this continuum system under Eulerian scaling by solving its discrete counterpart with analytical or numerical tools. As an illustration, simulations of the totally asymmetric exclusion process (â„“\ell-TASEP) are compared to analytical solutions of the model and applied to the corresponding hard rod gas. The case of short-range interaction is treated separately.Comment: 19 pages, 8 figure

    Dimensional effects in photoelectron spectra of Ag deposits on GaAs(110) surfaces

    Full text link
    It is shown that the peak structure observed in angle-resolved photoelectron spectra of metallic deposits can only be unambiguously associated to single electronic states if the deposit has a two dimensional character (finite along one spatial direction). In one and zero dimensions the density of states shows peaks related to bunches of single electron states (the finer structure associated to the latter may not always be experimentally resolved). The characteristics of the peak structure strongly depend on the band dispersion in the energy region where they appear. Results for the density of states and photoemission yield for Ag crystallites on GaAs(110) are presented and compared with experimental photoelectron spectra.Comment: Uuencoded gz-compressed postcript file including text and three figures; Send comments to [email protected]

    Heat Bath Particle Number Spectrum

    Get PDF
    We calculate the number spectrum of particles radiated during a scattering into a heat bath using the thermal largest-time equation and the Dyson-Schwinger equation. We show how one can systematically calculate {d}/{d\omega} to any order using modified real time finite-temperature diagrams. Our approach is demonstrated on a simple model where two scalar particles scatter, within a photon-electron heat bath, into a pair of charged particles and it is shown how to calculate the resulting changes in the number spectra of the photons and electrons.Comment: 29 pages, LaTeX; 14 figure

    A stacking-fault based microscopic model for platelets in diamond

    Get PDF
    We propose a new microscopic model for the {001}\{001\} planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp2sp^2 carbon atoms embedded in the common sp3sp^3 diamond structure. The properties of the model were determined using {\it ab initio} total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001][001] direction, the asymmetry between the [110][110] and the [11ˉ0][1\bar{1}0] directions, the infrared absorption peak B′B^\prime, and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200

    Annihilation of Immobile Reactants on the Bethe Lattice

    Full text link
    Two-particle annihilation reaction, A+A -> inert, for immobile reactants on the Bethe lattice is solved exactly for the initially random distribution. The process reaches an absorbing state in which no nearest-neighbor reactants are left. The approach of the concentration to the limiting value is exponential. The solution reproduces the known one-dimensional result which is further extended to the reaction A+B -> inert.Comment: 12 pp, TeX (plain

    VEGF (Vascular Endothelial Growth Factor) Induces NRP1 (Neuropilin-1) Cleavage via ADAMs (a Disintegrin and Metalloproteinase) 9 and 10 to Generate Novel Carboxy- Terminal NRP1 Fragments That Regulate Angiogenic Signaling

    Get PDF
    OBJECTIVE: NRP1(neuropilin-1) acts as a coreceptor for VEGF (vascular endothelial growth factor) with an essential role in angiogenesis. Recent findings suggest that posttranslational proteolytic cleavage of VEGF receptors may be an important mechanism for regulating angiogenesis, but the role of NRP1 proteolysis and the NRP1 species generated by cleavage in endothelial cells is not known. To characterize NRP1 proteolytic cleavage in endothelial cells, determine the mechanism, and investigate the role of NRP1 cleavage in regulation of endothelial cell function. APPROACH AND RESULTS: NRP1 species comprising the carboxy (C)-terminal and transmembrane NRP1 domains but lacking the ligand-binding A and B regions are constitutively expressed in endothelial cells. Generation of these C-terminal domain NRP1 proteins is upregulated by phorbol ester and Ca2+ ionophore, and reduced by pharmacological inhibition of metalloproteinases, by small interfering RNA-mediated knockdown of 2 members of ADAM (a disintegrin and metalloproteinase) family, ADAMs 9 and 10, and by a specific ADAM10 inhibitor. Furthermore, VEGF upregulates expression of these NRP1 species in an ADAM9/10-dependent manner. Transduction of endothelial cells with adenoviral constructs expressing NRP1 C-terminal domain fragments inhibited VEGF-induced phosphorylation of VEGFR2 (VEGF receptor tyrosine kinase)/KDR and decreased VEGF-stimulated endothelial cell motility and angiogenesis in coculture and aortic ring sprouting assays. CONCLUSIONS: These findings identify novel NRP1 species in endothelial cells and demonstrate that regulation of NRP1 proteolysis via ADAMs 9 and 10 is a new regulatory pathway able to modulate VEGF angiogenic signaling

    Yang-Lee Theory for a Nonequilibrium Phase Transition

    Full text link
    To analyze phase transitions in a nonequilibrium system we study its grand canonical partition function as a function of complex fugacity. Real and positive roots of the partition function mark phase transitions. This behavior, first found by Yang and Lee under general conditions for equilibrium systems, can also be applied to nonequilibrium phase transitions. We consider a one-dimensional diffusion model with periodic boundary conditions. Depending on the diffusion rates, we find real and positive roots and can distinguish two regions of analyticity, which can identified with two different phases. In a region of the parameter space both of these phases coexist. The condensation point can be computed with high accuracy.Comment: 4 pages, accepted for publication in Phys.Rev.Let

    Infinite reflections of shock fronts in driven diffusive systems with two species

    Full text link
    Interaction of a domain wall with boundaries of a system is studied for a class of stochastic driven particle models. Reflection maps are introduced for the description of this process. We show that, generically, a domain wall reflects infinitely many times from the boundaries before a stationary state can be reached. This is in an evident contrast with one-species models where the stationary density is attained after just one reflection.Comment: 11 pages, 8 eps figs, to appearin JPhysA 01.200

    The Effect of Weak Interactions on the Ultra-Relativistic Bose-Einstein Condensation Temperature

    Full text link
    We calculate the ultra-relativistic Bose-Einstein condensation temperature of a complex scalar field with weak lambda Phi^4 interaction. We show that at high temperature and finite density we can use dimensional reduction to produce an effective three-dimensional theory which then requires non-perturbative analysis. For simplicity and ease of implementation we illustrate this process with the linear delta expansion.Comment: Latex2e, 12 pages, three eps figures, replacement with additional discussion and extra figur
    • …
    corecore