863 research outputs found

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    Manufacture and Characterisation of a Novel, Low Modulus, Negative Poisson’s Ratio Composite

    Get PDF
    Copyright © 2009 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Composites Science and Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composites Science and Technology, Vol. 69 Issue 5 (2009). DOI: 10.1016/j.compscitech.2008.12.016Relatively few negative Poisson’s ratio (auxetic) composites have been manufactured and characterised and none with inherently auxetic phases [Milton G. J. Mech. Phys. Solids 1992;40:1105–37]. This paper presents the use of a novel double-helix yarn that is shown to be auxetic, and an auxetic composite made from this yarn in a woven textile structure. This is the first reported composite to exhibit auxetic behaviour using inherently auxetic yarns. Importantly, both the yarn and the composite are produced using standard manufacturing techniques and are therefore potentially useful in a wide range of engineering applications

    Density functional theory of phase coexistence in weakly polydisperse fluids

    Full text link
    The recently proposed universal relations between the moments of the polydispersity distributions of a phase-separated weakly polydisperse system are analyzed in detail using the numerical results obtained by solving a simple density functional theory of a polydisperse fluid. It is shown that universal properties are the exception rather than the rule.Comment: 10 pages, 2 figures, to appear in PR

    Chiral Dynamics and the Low Energy Kaon-Nucleon Interaction

    Get PDF
    We examine the meson-baryon interaction in the strangeness S=-1 sector using an effective chiral Lagrangian. Potentials are derived from this Lagrangian and used in a coupled-channel calculation of the low energy observables. The potentials are constructed such that in the Born approximation the s-wave scattering amplitude is the same as that given by the effective chiral Lagrangian, up to order q2q^2. Comparison is made with the available low energy hadronic data of the coupled Kp,Σπ,ΛπK^-p, \Sigma \pi, \Lambda \pi system, which includes the Λ(1405)\Lambda (1405) resonance, KpK^-p elastic and inelastic scattering, and the threshold branching ratios of the KpK^-p decay. Good fits to the experimental data and estimates of previously unknown Lagrangian parameters are obtained.Comment: 20 pages, 10 postscript figures, uses revtex, e-mail addresses: [email protected], [email protected], [email protected]

    Impacts and effects of ocean warming on intertidal rocky habitats.

    Get PDF
    • Intertidal rocky habitats comprise over 50% of the shorelines of the world, supporting a diversity of marine life and providing extensive ecosystem services worth in the region of US$ 5-10 trillion per year. • They are valuable indicators of the impacts of climate change on the wider marine environment and ecosystems. • Changes in species distributions, abundance and phenology have already been observed around the world in response to recent rapid climate change. • Species-level responses will have considerable ramifications for the structure of communities and trophic interactions, leading to eventual changes in ecosystem functioning (e.g. less primary producing canopy-forming algae in the North-east Atlantic). • Whilst progress is made on the mitigation1 required to achieve goals of a lower-carbon world, much can be done to enhance resilience to climate change. Managing the multitude of other interactive impacts on the marine environment, over which society has greater potential control (e.g. overfishing, invasive non-native species, coastal development, and pollution), will enable adaptation1 in the short and medium term of the next 5-50 years

    Initial State Interactions for KK^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the KpK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy KpK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte

    Low-mass pre--main-sequence stars in the Magellanic Clouds

    Full text link
    [Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4 figures. Accepted for publication in Space Science Review

    Peeling-ballooning stability of tokamak plasmas with applied 3D magnetic fields

    Get PDF
    The poloidal harmonics of the toroidal normal modes of an unstable axisymmetric tokamak plasma are employed as basis functions for the minimisation of the 3D energy functional. This approach presents a natural extension of the perturbative method considered in Anastopoulos Tzanis et al (2019 Nucl. Fusion 59 126028). This variational formulation is applied to the stability of tokamak plasmas subject to external non-axisymmetric magnetic fields. A comparison of the variational and perturbative methods shows that for D-shaped, high β N plasmas, the coupling of normal modes becomes strong at experimentally relevant applied 3D fields, leading to violation of the assumptions that justify a perturbative analysis. The variational analysis employed here addresses strong coupling, minimising energy with respect to both toroidal and poloidal Fourier coefficients. In general, it is observed that ballooning unstable modes are further destabilised by the applied 3D fields and field-aligned localisation of the perturbation takes place, as local ballooning theory suggests. For D-shaped high β N plasmas, relevant to experimental cases, it is observed that the existence of intermediate n unstable peeling-ballooning modes, where a maximum in the growth rate spectrum typically occurs, leads to a destabilising synergistic coupling that strongly degrades the stability of the 3D system

    Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity

    Full text link
    We analyse the effect of a continuous spread of particle lengths on the phase behavior of rodlike particles, using the Onsager theory of hard rods. Our aim is to establish whether ``unusual'' effects such as isotropic-nematic-nematic (I-N-N) phase separation can occur even for length distributions with a single peak. We focus on the onset of I-N coexistence. For a log-normal distribution we find that a finite upper cutoff on rod lengths is required to make this problem well-posed. The cloud curve, which tracks the density at the onset of I-N coexistence as a function of the width of the length distribution, exhibits a kink; this demonstrates that the phase diagram must contain a three-phase I-N-N region. Theoretical analysis shows that in the limit of large cutoff the cloud point density actually converges to zero, so that phase separation results at any nonzero density; this conclusion applies to all length distributions with fatter-than-exponentail tails. Finally we consider the case of a Schulz distribution, with its exponential tail. Surprisingly, even here the long rods (and hence the cutoff) can dominate the phase behaviour, and a kink in the cloud curve and I-N-N coexistence again result. Theory establishes that there is a nonzero threshold for the width of the length distribution above which these long rod effects occur, and shows that the cloud and shadow curves approach nonzero limits for large cutoff, both in good agreement with the numerical results.Comment: 20 pages, 13 figure
    corecore