1,636 research outputs found

    Spurious states in the Faddeev formalism for few-body systems

    Get PDF
    We discuss the appearance of spurious solutions of few-body equations for Faddeev amplitudes. The identification of spurious states, i.e., states that lack the symmetry required for solutions of the Schroedinger equation, as well as the symmetrization of the Faddeev equations is investigated. As an example, systems of three and four electrons, bound in a harmonic-oscillator potential and interacting by the Coulomb potential, are presented.Comment: 11 pages. REVTE

    Dark matter annihilation and non-thermal Sunyaev-Zel'dovich effect: II. dwarf spheroidal galaxy

    Full text link
    We calculate the CMB temperature distortion due to the energetic electrons and positrons produced by dark matter annihilation (Sunyaev-Zel'dovich effect), in dwarf spheroidal galaxies (dSphs). In the calculation we have included two important effects which were previously ignored. First we show that the electron-positron pairs with energy less than GeV, which were neglected in previous calculation, could contribute a significant fraction of the total signal. Secondly we also consider the full effects of diffusion loss, which could significantly reduce the density of electron-positron pairs at the center of cuspy halos. For neutralinos, we confirm that detecting such kind of SZ effect is beyond the capability of the current or even the next generation experiments. In the case of light dark matter (LDM) the signal is much larger, but even in this case it is only marginally detectable with the next generation of experiment such as ALMA. We conclude that similar to the case of galaxy clusters, in the dwarf galaxies the SZ_2DM} effect is not a strong probe of DM annihilations.Comment: 22 pages, 9 figures, version accepted by JCA

    Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems

    Full text link
    In this paper we present a self-contained macroscopic description of diffusive systems interacting with boundary reservoirs and under the action of external fields. The approach is based on simple postulates which are suggested by a wide class of microscopic stochastic models where they are satisfied. The description however does not refer in any way to an underlying microscopic dynamics: the only input required are transport coefficients as functions of thermodynamic variables, which are experimentally accessible. The basic postulates are local equilibrium which allows a hydrodynamic description of the evolution, the Einstein relation among the transport coefficients, and a variational principle defining the out of equilibrium free energy. Associated to the variational principle there is a Hamilton-Jacobi equation satisfied by the free energy, very useful for concrete calculations. Correlations over a macroscopic scale are, in our scheme, a generic property of nonequilibrium states. Correlation functions of any order can be calculated from the free energy functional which is generically a non local functional of thermodynamic variables. Special attention is given to the notion of equilibrium state from the standpoint of nonequilibrium.Comment: 21 page

    Early stage morphology of quench condensed Ag, Pb and Pb/Ag hybrid films

    Full text link
    Scanning Tunneling Microscopy (STM) has been used to study the morphology of Ag, Pb and Pb/Ag bilayer films fabricated by quench condensation of the elements onto cold (T=77K), inert and atomically flat Highly Oriented Pyrolytic Graphite (HOPG) substrates. All films are thinner than 10 nm and show a granular structure that is consistent with earlier studies of QC films. The average lateral diameter, 2rˉ\bar {2r}, of the Ag grains, however, depends on whether the Ag is deposited directly on HOPG (2rˉ\bar {2r} = 13 nm) or on a Pb film consisting of a single layer of Pb grains (2rˉ\bar {2r} = 26.8 nm). In addition, the critical thickness for electrical conduction (dGd_{G}) of Pb/Ag films on inert glass substrates is substantially larger than for pure Ag films. These results are evidence that the structure of the underlying substrate exerts an influence on the size of the grains in QC films. We propose a qualitative explanation for this previously unencountered phenomenon.Comment: 11 pages, 3 figures and one tabl

    Anisotropic distribution functions for spherical galaxies

    Full text link
    A method is presented for finding anisotropic distribution functions for stellar systems with known, spherically symmetric, densities, which depends only on the two classical integrals of the energy and the magnitude of the angular momentum. It requires the density to be expressed as a sum of products of functions of the potential and of the radial coordinate. The solution corresponding to this type of density is in turn a sum of products of functions of the energy and of the magnitude of the angular momentum. The products of the density and its radial and transverse velocity dispersions can be also expressed as a sum of products of functions of the potential and of the radial coordinate. Several examples are given, including some of new anisotropic distribution functions. This device can be extended further to the related problem of finding two-integral distribution functions for axisymmetric galaxies.Comment: 5 figure

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review
    • …
    corecore