In this paper we present a self-contained macroscopic description of
diffusive systems interacting with boundary reservoirs and under the action of
external fields. The approach is based on simple postulates which are suggested
by a wide class of microscopic stochastic models where they are satisfied. The
description however does not refer in any way to an underlying microscopic
dynamics: the only input required are transport coefficients as functions of
thermodynamic variables, which are experimentally accessible. The basic
postulates are local equilibrium which allows a hydrodynamic description of the
evolution, the Einstein relation among the transport coefficients, and a
variational principle defining the out of equilibrium free energy. Associated
to the variational principle there is a Hamilton-Jacobi equation satisfied by
the free energy, very useful for concrete calculations. Correlations over a
macroscopic scale are, in our scheme, a generic property of nonequilibrium
states. Correlation functions of any order can be calculated from the free
energy functional which is generically a non local functional of thermodynamic
variables. Special attention is given to the notion of equilibrium state from
the standpoint of nonequilibrium.Comment: 21 page