77,319 research outputs found

    Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    Get PDF
    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved

    Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    Get PDF
    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs

    Rules for transition rates in nonequilibrium steady states

    Full text link
    Just as transition rates in a canonical ensemble must respect the principle of detailed balance, constraints exist on transition rates in driven steady states. I derive those constraints, by maximum information-entropy inference, and apply them to the steady states of driven diffusion and a sheared lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behaviour and, for steady shear, gives rise to stress-mediated long-range interactions.Comment: 4 pages. To appear in Physical Review Letter

    Criticality and Condensation in a Non-Conserving Zero Range Process

    Get PDF
    The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which contains a subextensive number of particles. A detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi

    Variable geometry aft-fan for takeoff quieting or thrust augmentation of a turbojet engine

    Get PDF
    A concept is presented that combines the low-noise and high-thrust characteristics of a turbofan at takeoff, together with its high efficiency at subsonic flight speeds, with the high efficiency of a turbojet at supersonic cruise. It consists of a free turbine with tip fan mounted behind the turbine of a conventional turbojet engine. Fan air is supplied from blow-in doors or is ducted from the main engine inlet. At high flight speeds where fan augmentation is not desirable, the fan inlet is closed and the free turbine is stopped by adjustment of its variable-camber stators. Estimates of noise, cycle performance, and example configurations are presented for a typical supersonic transport application

    A model colloidal fluid with competing interactions: bulk and interfacial properties

    Get PDF
    Using a simple mean-field density functional theory theory (DFT), we investigate the structure and phase behaviour of a model colloidal fluid composed of particles interacting via a pair potential which has a hard core of diameter σ\sigma, is attractive Yukawa at intermediate separations and repulsive Yukawa at large separations. We analyse the form of the asymptotic decay of the bulk fluid correlation functions, comparing results from our DFT with those from the self consistent Ornstein-Zernike approximation (SCOZA). In both theories we find rich crossover behaviour, whereby the ultimate decay of correlation functions changes from monotonic to long-wavelength damped oscillatory decay on crossing certain lines in the phase diagram, or sometimes from oscillatory to oscillatory with a longer wavelength. For some choices of potential parameters we find, within the DFT, a λ\lambda-line at which the fluid becomes unstable with respect to periodic density fluctuations. SCOZA fails to yield solutions for state points near such a λ\lambda-line. The propensity to clustering of particles, which is reflected by the presence of a long wavelength σ\gg \sigma, slowly decaying oscillatory pair correlation function, and a structure factor that exhibits a very sharp maximum at small but non zero wavenumbers, is enhanced in states near the λ\lambda-line. We present density profiles for the planar liquid-gas interface and for fluids adsorbed at a planar hard wall. The presence of a nearby λ\lambda-transition gives rise to pronounced long-wavelength oscillations in the one-body densities at both types of interface.Comment: 14 pages, 11 figure

    Product Measure Steady States of Generalized Zero Range Processes

    Full text link
    We establish necessary and sufficient conditions for the existence of factorizable steady states of the Generalized Zero Range Process. This process allows transitions from a site ii to a site i+qi+q involving multiple particles with rates depending on the content of the site ii, the direction qq of movement, and the number of particles moving. We also show the sufficiency of a similar condition for the continuous time Mass Transport Process, where the mass at each site and the amount transferred in each transition are continuous variables; we conjecture that this is also a necessary condition.Comment: 9 pages, LaTeX with IOP style files. v2 has minor corrections; v3 has been rewritten for greater clarit

    Welding of precipitation-hardening stainless steels

    Get PDF
    Welding of precipitation hardening stainless steel

    Numerical Evidence for Divergent Burnett Coefficients

    Full text link
    In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf 18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones fluid was presented in the previous paper. Now, sufficient resources have become available to address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case is known to have infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive relation) from mode coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones fluid undergoing colour flow, which indicates that this term is diverges in the thermodynamic limit.Comment: 12 pages, 9 figure
    corecore