1,694 research outputs found

    Interpersonal problems of the nonprofit workforce: Evaluating the wounded healer as the reason for high turnover

    Get PDF
    The research goal was to identify a potential explanation for the high levels of turnover in nonprofit organizations. First, nonprofit employees’ levels of Adverse Childhood Experiences (ACEs) were evaluated and found to be significantly higher than for for-profit and government employees. This phenomenon could speak to a self-selection bias whereas wounded healers are drawn into the helping fields because of some perceived personal benefit they gain or because they might feel they can offer something more given their experiences. Having higher ACEs has been linked to job instability, and could be a contributing factor in the sector\u27s turnover rates. Nonprofit employees’ levels of interpersonal problems were also examined using the IIP-32 and it was found they had lower levels than the general population

    The cascading impacts of livestock grazing in upland ecosystems: a 10-year experiment

    Get PDF
    ACKNOWLEDGMENTS We thank The Woodland Trust, Scotland for permission to use the Glen Finglas Estate. Sally Burgess, Timothy Conner, Charlie Gardner, Ian Joyce,Fi Leckie, Elaine McEwan, Ruth Mitchell, Gabor Pozsgai, Gina Prior and others assisted with the collection and sorting of samples at different stages of the project. S. M. Redpath, R. J. Pakeman, P. Dennis and D. M. Evans designed the study; D. M. Evans, N.Villar, N. A. Littlewood, S. A. Evans and J. Skartveit collected the data; D. M. Evans and N. Villar analyzed the data; D. M. Evans and N. Villar co-wrote as joint-first authors the first draft of the manuscript, and all authors contributed substantially to revisions.Peer reviewedPublisher PD

    An Examination of Commercial Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    Get PDF
    The Integrated Vehicle Health Management (IVHM) Project is one of the four projects within the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSafe). The IVHM Project conducts research to develop validated tools and technologies for automated detection, diagnosis, and prognosis that enable mitigation of adverse events during flight. Adverse events include those that arise from system, subsystem, or component failure, faults, and malfunctions due to damage, degradation, or environmental hazards that occur during flight. Determining the causal factors and adverse events related to IVHM technologies will help in the formulation of research requirements and establish a list of example adverse conditions against which IVHM technologies can be evaluated. This paper documents the results of an examination of the most recent statistical/prognostic accident and incident data that is available from the Aviation Safety Information Analysis and Sharing (ASIAS) System to determine the causal factors of system/component failures and/or malfunctions in U.S. commercial aviation accidents and incidents

    Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 infection of the thymus contributes to the defective regeneration and loss of CD4<sup>+ </sup>T cells in HIV-1-infected individuals. As thymic dendritic cells (DC) are permissive to infection by HIV-1, we examined the ability of thymic DC to enhance infection of thymocytes which may contribute to the overall depletion of CD4<sup>+ </sup>T cells. We compared productive infection in isolated human thymic and blood CD11c<sup>+ </sup>myeloid DC (mDC) and CD123<sup>+ </sup>plasmacytoid DC (pDC) using enhanced green fluorescent protein (EGFP) CCR5 (R5)-tropic NL(AD8) and CXCR4 (X4)-tropic NL4-3 HIV-1 reporter viruses. Transfer of productive HIV-1 infection from thymic mDC and pDC was determined by culturing these DC subsets either alone or with sorted thymocytes.</p> <p>Results</p> <p>Productive infection was observed in both thymic pDC and mDC following exposure to R5 HIV-1 and X4 HIV-1. Thymic pDC were more frequently productively infected by both R5 and X4 HIV-1 than thymic mDC (p = 0.03; n = 6). Thymic pDC efficiently transferred productive R5 HIV-1 infection to both CD3<sup>hi </sup>(p = 0.01; mean fold increase of 6.5; n = 6) and CD3<sup>lo </sup>thymocytes (mean fold increase of 1.6; n = 2). In comparison, transfer of productive infection by thymic mDC was not observed for either X4 or R5 HIV-1.</p> <p>Conclusions</p> <p>The capacity of thymic pDC to efficiently transfer R5 HIV-1 to both mature and immature thymocytes that are otherwise refractory to R5 virus may represent a pathway to early infection and impaired production of thymocytes and CD4<sup>+ </sup>T cells in HIV-1-infected individuals.</p

    Identification of Crew-Systems Interactions and Decision Related Trends

    Get PDF
    NASA Vehicle System Safety Technology (VSST) project management uses systems analysis to identify key issues and maintain a portfolio of research leading to potential solutions to its three identified technical challenges. Statistical data and published safety priority lists from academic, industry and other government agencies were reviewed and analyzed by NASA Aviation Safety Program (AvSP) systems analysis personnel to identify issues and future research needs related to one of VSST's technical challenges, Crew Decision Making (CDM). The data examined in the study were obtained from the National Transportation Safety Board (NTSB) Aviation Accident and Incident Data System, Federal Aviation Administration (FAA) Accident/Incident Data System and the NASA Aviation Safety Reporting System (ASRS). In addition, this report contains the results of a review of safety priority lists, information databases and other documented references pertaining to aviation crew systems issues and future research needs. The specific sources examined were: Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementation (SERFIs), Flight Deck Automation Issues (FDAI) and NTSB Most Wanted List and Open Recommendations. Various automation issues taxonomies and priority lists pertaining to human factors, automation and flight design were combined to create a list of automation issues related to CDM

    Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks

    Get PDF
    Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species’ geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered

    Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Get PDF
    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety

    Age-Related Increases in the Shoulder Strength of High School Wrestlers

    Get PDF
    This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?vid=4&sid=34ab1967-2aea-457b-b261-e90e7b05e38c%40sessionmgr11&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=20752108The purpose of this investigation was to examine age-related differences in absolute and relative isokinetic shoulder strength of high school wrestlers. A total of 122 high school wrestlers (Mage = 16.31 ± 1.18 yrs) volunteered to be measured for arm flexion and extension strength at the shoulder joint using a Cybex II dynamometer at 30, 180, and 300°-s"'. The sample was divided into four age groups: 13.75-15.00 (n=22), 15.08-16.00 (n=27). 16.08-17.00 (n=34), and 17.08-18.83 years (n=39). The results ofthis study indicated significant increases in absolute and relative arm flexion and extension strength across age when covaried for BW and FFW. In addition, comparisons with previously published data indicated differences between muscle groups in the pattern of strength gains that were dependent upon the speed of muscular contraction and may have been influenced by fiber type distribution characteristics
    corecore