96,927 research outputs found

    Accelerated testing of electronic parts Final report

    Get PDF
    Qualitative and quantitative accelerated testing methods for electronic equipmen

    Equivalence of two approaches for the inhomogeneous density in the canonical ensemble

    Full text link
    In this article we show that the inhomogeneous density obtained from a density-functional theory of classical fluids in the canonical ensemble (CE), recently presented by White et al [Phys. Rev. Lett. 84 (2000) 1220], is equivalent to first order to the result of the series expansion of the CE inhomogeneous density introduced by Gonzalez et al [Phys. Rev. Lett. 79 (1997) 2466].Comment: 6 pages, RevTe

    The Lee-Yang theory of equilibrium and nonequilibrium phase transitions

    Full text link
    We present a pedagogical account of the Lee-Yang theory of equilibrium phase transitions and review recent advances in applying this theory to nonequilibrium systems. Through both general considerations and explicit studies of specific models, we show that the Lee-Yang approach can be used to locate and classify phase transitions in nonequilibrium steady states.Comment: 24 pages, 7 papers, invited paper for special issue of The Brazilian Journal of Physic

    Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel

    Get PDF
    We present a density-functional study of a binary phase-separating mixture of soft core particles immersed in a random matrix of quenched soft core particles of larger size. This is a model for a binary polymer mixture immersed in a crosslinked rigid polymer network. Using the replica `trick' for quenched-annealed mixtures we derive an explicit density functional theory that treats the quenched species on the level of its one-body density distribution. The relation to a set of effective external potentials acting on the annealed components is discussed. We relate matrix-induced condensation in bulk to the behaviour of the mixture around a single large particle. The interfacial properties of the binary mixture at a surface of the quenched matrix display a rich interplay between capillary condensation inside the bulk matrix and wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.

    Discontinuous Transition in a Boundary Driven Contact Process

    Full text link
    The contact process is a stochastic process which exhibits a continuous, absorbing-state phase transition in the Directed Percolation (DP) universality class. In this work, we consider a contact process with a bias in conjunction with an active wall. This model exhibits waves of activity emanating from the active wall and, when the system is supercritical, propagating indefinitely as travelling (Fisher) waves. In the subcritical phase the activity is localised near the wall. We study the phase transition numerically and show that certain properties of the system, notably the wave velocity, are discontinuous across the transition. Using a modified Fisher equation to model the system we elucidate the mechanism by which the the discontinuity arises. Furthermore we establish relations between properties of the travelling wave and DP critical exponents.Comment: 14 pages, 9 figure

    Dynamical density functional theory and its application to spinodal decomposition

    Get PDF
    We present an alternative derivation of the dynamical density functional theory for the one body density profile of a classical fluid developed by Marconi and Tarazona [J. Chem. Phys., 110, 8032 (1999)]. Our derivation elucidates further some of the physical assumptions inherent in the theory and shows that it is not restricted to fluids composed of particles interacting solely via pair potentials; rather it applies to general, multi-body interactions. The starting point for our derivation is the Smoluchowski equation and the theory is therefore one for Brownian particles and as such is applicable to colloidal fluids. In the second part of this paper we use the dynamical density functional theory to derive a theory for spinodal decomposition that is applicable at both early and intermediate times. For early stages of spinodal decomposition our non-linear theory is equivalent to the (generalised) linear Cahn-Hilliard theory, but for later times it incorporates coupling between different Fourier components of the density fluctuations (modes) and therefore goes beyond Cahn-Hilliard theory. We describe the results of calculations for a model (Yukawa) fluid which show that the coupling leads to the growth of a second maximum in the density fluctuations, at a wavenumber larger than that of the main peak.Comment: 23 pages, 3 figure

    Criticality and Condensation in a Non-Conserving Zero Range Process

    Get PDF
    The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which contains a subextensive number of particles. A detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi

    A Note on Adult Overwintering of Dasymutilla Nigripes in Michigan (Hymenoptera: Mutillidae)

    Get PDF
    Excerpt: Although Dasymutilla nigripes (Fabricius) is one of the more common Michigan velvet ant species, little is known about its life cycle. In his summary of mutillid life cycles, Michel (1928) indicated that mutillids of northern latitudes probably overwinter in the prepupal stage within the subterranean cells of their hymenopterous hosts. Bohart and McSwain (1939) cited prepupal overwintering as normal for Dasymutilla sackenii (Cresson) in California. However, Potts and Smith (1944), also working in California, collected overwintering adult female Dasymutilla aureola pacifica (Cresson)

    Correlation function algebra for inhomogeneous fluids

    Full text link
    We consider variational (density functional) models of fluids confined in parallel-plate geometries (with walls situated in the planes z=0 and z=L respectively) and focus on the structure of the pair correlation function G(r_1,r_2). We show that for local variational models there exist two non-trivial identities relating both the transverse Fourier transform G(z_\mu, z_\nu;q) and the zeroth moment G_0(z_\mu,z_\nu) at different positions z_1, z_2 and z_3. These relations form an algebra which severely restricts the possible form of the function G_0(z_\mu,z_\nu). For the common situations in which the equilibrium one-body (magnetization/number density) profile m_0(z) exhibits an odd or even reflection symmetry in the z=L/2 plane the algebra simplifies considerably and is used to relate the correlation function to the finite-size excess free-energy \gamma(L). We rederive non-trivial scaling expressions for the finite-size contribution to the free-energy at bulk criticality and for systems where large scale interfacial fluctuations are present. Extensions to non-planar geometries are also considered.Comment: 15 pages, RevTex, 4 eps figures. To appear in J.Phys.Condens.Matte
    corecore