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Abstract: The suprachiasmatic nucleus (SCN) is a network of neural 

oscillators that program daily rhythms in mammalian behavior and 

physiology. Over the last decade much has been learned about how SCN clock 

neurons coordinate together in time and space to form a cohesive population. 

Despite this insight, much remains unknown about how SCN neurons 

communicate with one another to produce emergent properties of the 

network. Here we review the current understanding of communication among 

SCN clock cells and highlight a collection of formal assays where changes in 

SCN interactions provide for plasticity in the waveform of circadian rhythms in 

behavior. Future studies that pair analytical behavioral assays with modern 
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neuroscience techniques have the potential to provide deeper insight into SCN 
circuit mechanisms. 

Abbreviations 

 GABA, γ-aminobutyric acid;  

 AVP, arginine vasopressin;  

 DD, constant darkness;  

 LD, light:dark;  

 LDLD, light:dark:light:dark;  

 LL, constant light;  

 NRs, nonresponders;  

 NWR, novel wheel running;  

 PRC, phase response curve;  

 SCN, suprachiasmatic nucleus;  

 TTX, tetrodotoxin;  

 VIP, vasoactive intestinal polypeptide 

Key words: circadian; suprachiasmatic nucleus; clock network; coupling; 

behavior; plasticity 

Introduction 

Daily rhythms are an important and pervasive feature of life on 

this planet. In mammals, a wide variety of behavioral and 

physiological processes fluctuate regularly each day (e.g., locomotor 

activity, sleep, cognitive performance, hormone secretion, protein 

synthesis, cell division). These and other essential processes are 

programed by an endogenous timekeeping system that has evolved to 

promote survival in a rhythmic environment. The primary evidence for 

the endogenous basis of daily rhythms is that they persist under 

constant conditions devoid of environmental time cues. Because the 

period length adopted under constant conditions is not exactly 24 h, 

these internally programed rhythms are referred to as circadian (circa 

dies, about a day). Experimental approaches that track daily changes 

in behavior and physiology have proven vital for defining formal 

mechanisms of circadian timekeeping and the process of entrainment 

to the 24-h environment. Following on this work, the biological 

generator of daily rhythms was localized to a specific site in the 

anterior hypothalamus, the suprachiasmatic nucleus (SCN). The 

discovery that this small region of the brain controls the temporal 

patterning of behavior and physiology is one of the most striking 

examples of localized function in the field of neuroscience. Recent 
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advances have built upon this pioneering work to define the cellular 

mechanisms of circadian timekeeping, revealing the existence of a 

molecular oscillator built of “clock genes”. We now realize that nearly 

every cell of the body is a daily clock, and the next major challenge in 

the field is to define the circuits and signals through which these clocks 

interact with one another. 

In this review, we highlight the evidence that the master 

circadian clock in mammals contains multiple interacting clock cells 

organized into a network, as first articulated in 1960 (Pittendrigh, 

1960). Importantly, this classic model posits that the master circadian 

clock contains functionally distinct clocks that coordinate with one 

another to form a pacemaker. A large body of research supports the 

fundamental premise of this model, which is striking given that it was 

first formulated based purely on behavioral data obtained before the 

discovery of the SCN’s role as a pacemaker. Although there is 

compelling evidence that the SCN does indeed contain multiple cellular 

clocks, little is known about the circuits, signals, and mechanisms by 

which SCN cells coordinate with one another. Deeper insight into SCN 

circuitry is imperative for understanding the intercellular interactions 

that guide rhythmic neural behavior, which is a common theme 

emerging throughout neuroscience. Here we will provide a brief 

summary of clock circuits and then review formal assays where 

plasticity in circadian behavior is thought to reflect interactions among 

master clock cells. We hope that re-examining these formal analytical 

tools through a modern lens will highlight ways that these assays can 

be used to further define SCN circuits. As with past advances in our 

field, the continued synthesis of formal mechanistic insight with 

cutting-edge technical advances is expected to deepen our 

understanding of principles and mechanisms underlying circadian 

timekeeping. 

Circadian circuits 

The circadian timekeeping system: clocks at multiple 

levels 

Multi-clock models can be categorized as hierarchical or complex 

(Moore-Ede et al., 1976). Hierarchical circadian models postulate that 
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the body contains multiple circadian clock tissues, with “peripheral” 

clock tissues regulated by a central pacemaker that maintains internal 

synchrony within the system (Rosenwasser and Adler, 1986). In 

contrast, complex circadian models stipulate the existence of multiple, 

interacting clock cells within the central pacemaker itself (Pittendrigh, 

1974 and Pittendrigh and Daan, 1976b). There is a great deal of 

experimental support for each model, reviewed briefly below, and in 

both models a critical question is how multiple clock tissues or cells are 

able to communicate with one another. It is important to note that 

communication is not required in a multi-clock system. For example, a 

group of cellular clocks with identical period lengths would remain 

synchronized without intercellular signaling. Although it is theoretically 

possible that cellular clocks could be identical clones running at the 

same speed, this is biologically implausible. Indeed, a large number of 

studies indicate that the intrinsic period of different tissue and cellular 

clocks are not identical (Abe et al., 2002, Balsalobre, 

2002 and Granados-Fuentes et al., 2004). Even in the face of 

heterogeneous period lengths, intercellular communication may not be 

essential given that external input (i.e., zeitgebers, e.g., light) might 

effectively synchronize a population of non-interacting clock cells. 

However, under constant conditions devoid of time cues, non-

interacting clock cells would be unable to maintain synchrony. Under 

these circumstances, temporal desynchrony would lead to arrhythmia 

at the level of the population and multiple, independent periodicities 

would manifest in the overt rhythms controlled by these clock cells. 

Since the vast majority of mammalian species do not display multiple 

periodicities under constant darkness (DD), this implies that the 

underlying tissue and cellular clocks interact through coupling 

mechanisms. In the simplest sense, coupling is the ability of one 

cellular (or tissue) clock to influence the rhythm of another clock 

through interactions that may be reciprocal or one-directional. In this 

regard, coupling may influence any rhythmic property (i.e., period, 

phase, amplitude, precision), although an emphasis is often placed on 

coupling mechanisms that maintain period synchrony. In addition, 

intercellular interactions regulate phase synchrony among different 

clocks. In some cases, coupling may inhibit phase synchrony to 

prevent the simultaneous expression of opposing biological processes. 

In this manner, coupling would optimize performance of the system as 

a whole by preventing “phase locking” (i.e., absolute phase 
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synchrony). Thus, coupling can have multiple consequences for the 

expression of rhythmic parameters, which could be mediated by 

distinct types of signaling mechanisms. 

Findings supportive of the hierarchical clock model derive from 

studies of human and non-human primates, where independent 

rhythms of behavioral activity and body temperature emerged under 

constant conditions or after large shifts in the entraining light:dark 

(LD) cycle (Aschoff, 1965, Moore-Ede et al., 1977, Sulzman et al., 

1977, Tapp and Natelson, 1989 and Weibel et al., 1997). Based on the 

concept that a single oscillator cannot simultaneously express multiple, 

independent periods, these results were interpreted as reflecting the 

actions of at least two distinct oscillators disconnected from central 

control. The existence of multiple clock tissues was also indicated by 

work demonstrating that food and psychoactive stimulants could 

restore the expression of daily rhythms in SCN-lesioned animals 

(Honma et al., 1989, Stephan, 1989 and Tataroglu et al., 2006). 

Although, it has been very difficult to localize non-SCN food- and drug-

sensitive tissue clocks (Davidson, 2006), recent work highlights an 

important role for dopamine signaling in the dorsal striatum (Gallardo 

et al., 2014). To date, the most compelling evidence in support of the 

hierarchical clock model is the discovery that numerous glands and 

tissues are able to generate endogenous rhythms in vitro ( Abe et al., 

2002, Balsalobre, 2002 and Granados-Fuentes et al., 2004). 

Endogenous rhythms are also displayed by single somatic cells, which 

indicates that the basic mechanism for circadian timekeeping operates 

at the molecular level. 

At the cellular level, circadian rhythms are programed by a 

molecular oscillator consisting of a family of clock genes that regulate 

their own expression (Mackey, 2007, Zhang and Kay, 2010 and Buhr 

and Takahashi, 2013). At its core, circadian rhythms are sustained by 

a ∼24-h transcriptional-translational negative feedback loop (Fig. 1A) 

with positive elements that serve as activators and negative elements 

that serve as repressors. The positive elements are bHLH-PAS 

transcription factors CLOCK and BMAL, which form a dimer that 

initiates transcription of Period (Per1, Per2, Per3) and Cryptochrome 

(Cry1, Cry2) genes ( Fig. 1A-1). The corresponding protein products 

(e.g. PER1-3, CRY1-2) are negative elements that form protein dimers, 

which feedback to inhibit their own expression by antagonizing the 
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transcriptional activity of CLOCK-BMAL (Fig. 1A-2). The negative 

elements are degraded over time, thus relieving repression and 

allowing transcription to recommence the following day. In addition to 

this primary loop, there are a number of interconnected accessory 

loops that act to stabilize and amplify circadian oscillations at the 

cellular level ( Fig. 1, Fig. 2 and Fig. 3). This molecular oscillator 

functions in nearly every cell of the body to regulate biological 

processes in a tissue-specific manner ( Panda et al., 2002, Storch et 

al., 2002 and Zhang et al., 2014). 

 

Fig. 1. Circadian clocks at multiple levels. (A) Simplified model of circadian 
timekeeping at the molecular level depicting clock gene transcriptional-translational 
feedback loops. 1. The transcription factors CLOCK and BMAL1 bind to E-box elements 
(black box) within the promoter sequences of a variety of clock genes. Note that 
NPAS2 is a paralog of CLOCK that functions in some tissues to activate transcription. 
2. The protein products of Period (Per) and Cryptochrome (Cry) genes form repressors 
that inhibit their own transcription. Note there are three paralogs of Per (Per1, Per2, 

Per3) and two paralogs of Cry (Cry1, Cry2). 3. Additional feedback loops involve 

additional clock genes that interact with the elements of the core loop to amplify and 
stabilize molecular clock function. For example, the protein products of Rev-erb and 
Ror genes compete for binding at ROR elements (white box), whereas the protein 
products of Dbp and E4bp4 compete for binding at D-box elements (gray box). (B) 
Simplified model of circadian timekeeping at the systems level. The master clock 

within the SCN (red circle) receives light input that synchronizes it to the 24-h day. 
The SCN then provides outputs to downstream clocks in the brain and body to 
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coordinate their function. (C) Left: The SCN contains ∼10,000 neurons in each lobe 

that express the clock protein PER2. Middle: SCN neurons can be classified based on 
neuropeptide expression, with the major groups being those that express Arginine 
Vasopressin (AVP) and Vasoactive Intestinal Polypeptide (VIP). Right: Simplified model 

of circadian timekeeping within the SCN network. Briefly, VIP (depicted in red) and 
other neurons in the SCN core (depicted in blue) receive and process photic inputs, 
which they then transmit to neurons in the SCN shell (green) that provide outputs to 
downstream tissues. See text for additional details. 

These various tissue clocks are regulated by a master clock 

within the SCN, a bilateral structure in the anterior hypothalamus 

located immediately above the optic chiasm (Welsh et al., 

2010 and Mohawk et al., 2012). Lesion and tissue-graft experiments 

have demonstrated that the SCN is both necessary and sufficient for 

sustained circadian rhythms under most experimental conditions 

(Weaver, 1998). Consistent with its role as master clock, the SCN as a 

tissue displays circadian rhythms in many cellular processes, including 

metabolism, electrical activity, and gene/protein expression (Klein et 

al., 1991), which it generates intrinsically without the need for input 

from the environment or other tissues. For example, the whole SCN 

exhibits circadian rhythms in spontaneous electrical firing and Period 

transcription in vitro, with peak expression during the projected 

daytime hours. Further, these circadian rhythms are reflected in the 

cellular activity of single SCN neurons, which typically display relatively 

short ∼5-h periods of electrical activity at midday ( Schaap et al., 

2003 and Brown et al., 2006). In addition to its intrinsic oscillatory 

capacity, the SCN receives input from the environment (e.g., light) 

that allows it to synchronize to the 24 h solar day. This photic input is 

transmitted to the SCN through a direct retinal projection, the 

retinohypothalamic tract, and several indirect pathways, including the 

geniculohypothalamic tract from the intergeniculate leaflet of the 

thalamus (Morin, 1994). The majority of retinal ganglion cells that 

provide photic input to the SCN expresses the photopigment 

melanopsin and respond intrinsically to photic stimulation ( Berson, 

2003, Gooley et al., 2003, Hattar et al., 2003, Morin et al., 2003, 

Panda et al., 2003 and Brown and Robinson, 2004). Light stimuli at 

night increase electrical firing and clock gene expression in the SCN, 

which is ultimately conveyed to downstream targets to adjust their 

phase. Thus, the SCN serves as the interface between the external and 

internal milieus, synchronizing the various body clocks to the 24-h 

world and one another (Fig. 1B). 
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Similar to the evolution of hierarchical models, both formal and 

physiological analyses support complex clock models that emphasize 

the existence of multiple, interacting oscillators within the master clock 

itself (Pittendrigh, 1960 and Pittendrigh and Daan, 1976b). The 

complex clock model was first proposed based on plasticity in 

behavioral phenotypes that manifest under various environmental 

conditions (Pittendrigh, 1960, Pittendrigh, 1974 and Pittendrigh and 

Daan, 1976b). In contrast to evidence for the hierarchical model, 

different overt rhythms were modulated in parallel and thus it was 

concluded that this form of environmentally induced plasticity reflected 

a global change occurring within the central pacemaker itself. It is now 

well established that the SCN does indeed contain a network of 

multiple cellular clocks (Fig. 1C). Individual SCN neurons are self-

sufficient cellular clocks that continue to express circadian rhythms 

even when synaptic communication is disrupted (Bouskila and Dudek, 

1993, Shibata and Moore, 1993, Welsh et al., 1995, Herzog et al., 

1997, Liu et al., 1997 and Shirakawa et al., 2001). However, when 

unable to interact, SCN neurons display different period lengths and 

desynchronize with one another over time. In contrast, when SCN 

neurons are able to communicate, period synchrony is sustained by 

intercellular signaling. The ability to maintain period synchrony at the 

tissue level independent of input appears to be a property that is not 

shared by other tissue clocks (Yamazaki et al., 2000, Nagoshi et al., 

2004 and Welsh et al., 2004). As discussed above, coupling 

mechanisms within the SCN also regulate phase synchrony, with SCN 

neurons “preferring” to adopt specific phase relations (Yamaguchi et 

al., 2003) that are modulated by the environment (Jagota et al., 2000, 

Ohta et al., 2005 and Inagaki et al., 2007). 

For both hierarchical and complex models, there remain 

fundamental questions concerning the properties and functions of the 

underlying clock cells or tissues. For the hierarchical model, important 

questions include: (1) how does the SCN communicate with 

downstream tissue clocks, (2) does the local clock in downstream 

tissues play an important role in controlling rhythmic output, and (3) 

do the cells and tissues of peripheral clocks interact with one another 

and/or transmit cues back to the SCN? Likewise, there are outstanding 

questions about the circuitry and function of the SCN complex. In 

order to understand the master clock network, it will be critical to: (1) 

address whether SCN neurons differentially contribute to the emergent 
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properties of the network and (2) define the mechanisms by which 

SCN communicate with one another to coordinate their rhythmic 

behavior. 

The clock complex: SCN circuitry 

The majority of SCN cells are local projection neurons that 

connect to other neurons in the SCN and surrounding hypothalamus 

(Abrahamson and Moore, 2001 and Moore et al., 2002). Nearly all SCN 

neurons produce γ-aminobutyric acid (GABA), yet they can be 

categorized into distinct subgroups based on neuropeptide expression 

(Moore and Speh, 1993 and Abrahamson and Moore, 2001). Classic 

work detailing SCN cytoarchitecture in the rat distinguished two 

spatially segregated compartments: the dorsomedial shell and the 

ventrolateral core (Moore and Silver, 1998). Within the SCN shell is a 

dense population of neurons that express arginine vasopressin (AVP), 

whereas the SCN core contains several different neuronal subclasses, 

including those that express vasoactive intestinal polypeptide (VIP). 

This organization typifies the SCN of most eutherian mammals studied 

to date, although regional anatomy and chemoarchitecture can vary 

between species (Cassone et al., 1988 and Morin, 2007). The SCN 

shell and core are convenient constructs for describing SCN 

compartmentalization; however, there is a growing appreciation that 

this organizational scheme belies a deeper complexity that awaits 

discovery. For instance, the SCN produces dozens of signaling factors, 

and the list of important SCN peptides continues to expand even to 

this day (van den Pol and Tsujimoto, 1985, Lee et al., 2013 and Lee et 

al., 2015). Thus, the SCN remains a complex structure with regions 

and cell types whose functions are not readily transparent (Moore et 

al., 2002, Antle et al., 2003, King et al., 2003, Lee et al., 

2003 and Antle and Silver, 2005). 

In addition to compartmentalization of neuropeptide expression, 

there are also regional differences in SCN function. For example, SCN 

neurons display regional differences in phase and inherent period 

length, which manifest even when considering a single neuropeptide 

subclass of SCN neuron (Shinohara et al., 1995, Schwartz et al., 2000, 

Quintero et al., 2003, Yamaguchi et al., 2003, Albus et al., 2005, 

Noguchi and Watanabe, 2008, Evans et al., 2011 and Myung et al., 
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2012). Further, light does not indiscriminately excite all SCN neurons; 

instead, photic stimuli activate only ∼25% of SCN neurons and inhibit 

a smaller population (Meijer et al., 1986, Jiao et al., 1999, 

Aggelopoulos and Meissl, 2000, Nakamura et al., 2004 and Brown et 

al., 2011). Tract tracing studies suggest that there is a denser retinal 

projection to the SCN core than the SCN shell (Abrahamson and 

Moore, 2001 and Lokshin et al., 2015). These anatomical differences in 

retinal connectivity map onto functional differences in photic 

responses, with the SCN core displaying light-induced changes in gene 

expression that precede those in the SCN shell (Silver et al., 1996, 

Dardente et al., 2002, Yan and Okamura, 2002, Yan and Silver, 2002, 

Kuhlman et al., 2003, Nagano et al., 2003 and Yan and Silver, 2004). 

The current working model of photic signaling is that the SCN core 

contains first order neurons that receive afferent input, which process 

and transmit this information to neurons in the SCN shell. On the other 

hand, the SCN shell is thought to contain strongly rhythmic cells that 

provide outputs to reset the phase of downstream tissues (Nakamura 

et al., 2001, Dardente et al., 2002, Zhou and Cheng, 2005, Kalsbeek 

et al., 2010 and Evans et al., 2015). However, there are aspects of 

this model that remain unclear. For instance, although some work 

supports the idea that subclasses of SCN neurons differ in oscillatory 

capacity (Jobst and Allen, 2002), recent work indicates that cellular 

rhythmicity is stochastic, relies on network interactions to be sustained 

stably, and does not segregate with neuropeptide expression (Webb et 

al., 2009). Further, both AVP and VIP neurons extend processes to 

target regions in the hypothalamus, thalamus, and forebrain 

(Abrahamson and Moore, 2001, Buijs and Kalsbeek, 

2001 and Kalsbeek and Buijs, 2002), which suggests that both SCN 

shell and core neurons provide signals to downstream clocks. The 

functional relevance of signals emanating from SCN neurons within 

different compartments remain ill defined. 

SCN signaling mechanisms 

Intercellular communication within the SCN network may 

involve multiple mechanisms (van den Pol and Dudek, 1993, Michel 

and Colwell, 2001 and Aton and Herzog, 2005). An important role for 

synaptic communication in SCN coupling is revealed by work 

demonstrating that blocking Na+-dependent action potentials with 
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tetrodotoxin (TTX) causes SCN neurons to desynchronize in vitro 

( Yamaguchi et al., 2003). But the persistence of SCN timekeeping in 

the presence of TTX or low Ca2+ suggests that the network can use 

other coupling mechanisms not dependent on synaptic release of 

signaling molecules ( Schwartz et al., 1987, Schwartz, 1991, Bouskila 

and Dudek, 1993, Dudek et al., 1993 and Shibata and Moore, 1993). 

In addition, the specific mechanisms employed in coupling may depend 

on the maturity of the network since the SCN displays circadian 

rhythms before synaptogenesis ( Shibata and Moore, 

1987 and Reppert, 1992). Although this plurality of potential coupling 

mechanisms presents an obstacle to understanding SCN circuitry, 

several factors have been identified that influence the emergent 

properties of the network (i.e., VIP, GABA, AVP). To date, significant 

progress has been made in defining the specific contribution of these 

coupling factors, although recent work suggests that their precise role 

in SCN coupling may be influenced by the state of the network itself 

( Evans et al., 2013, Bedont et al., 2014 and Wang et al., 2014). 

VIP 

Research conducted by a number of different labs has 

established a clear role for VIP in SCN coupling (Vosko et al., 2007). 

Mice deficient in either VIP or its receptor are unable to sustain 

circadian rhythms in DD, and instead their locomotor rhythms devolve 

into seemingly random bouts of activity (Harmar et al., 

2002 and Colwell et al., 2003). The arrhythmic phenotype that 

manifests in VIP-deficient mice reflects a loss of neuronal synchrony 

within the SCN and a decrease in the number of SCN neurons able to 

maintain high amplitude rhythms (Aton et al., 2005, Maywood et al., 

2006, Brown et al., 2007, Hughes et al., 2008 and Ciarleglio et al., 

2009). VIP knockout mice also display a range of other phenotypes, 

including changes in sleep, metabolism, cardiac function, and 

reproduction (Bechtold et al., 2008, Sheward et al., 2010, Hannibal et 

al., 2011, Hu et al., 2011, Schroeder et al., 2011, Fahrenkrug et al., 

2012 and Loh et al., 2014), which may reflect loss of internal 

synchrony at the systems level (Loh et al., 2011). Thus, VIP signaling 

is an important mediator of SCN synchronization whose absence has 

widespread consequences for behavior and physiology. However, 

recent work indicates that VIP can also desynchronize the phase of 
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SCN neurons if given at the wrong time or at high doses (An et al., 

2013 and Ananthasubramaniam et al., 2014), which highlights the 

need to define precisely the properties and mechanisms of VIP 

signaling to better understand how it regulates clock function at the 

cellular, network, and systems levels. 

GABA 

Unlike VIP, recent work has revealed that GABA influences 

circadian coupling by desynchronizing SCN neurons (Evans et al., 

2013, Freeman et al., 2013, DeWoskin et al., 2015 and Myung et al., 

2015). Normally, this effect of GABAA signaling is hard to detect 

because VIP signaling is a potent synchronizing agent. But in the 

absence of VIP (e.g., when SCN slices are cultured from VIP knockout 

mice or cultured with VIP antagonists), SCN neurons desynchronize 

due to GABAA signaling within the network (Evans et al., 

2013 and Freeman et al., 2013). However, the functional role of 

GABAA signaling can be influenced by environmentally induced changes 

in the state of the network (Evans et al., 2013, Farajnia et al., 

2014 and Myung et al., 2015). For example, although GABAA signaling 

acts to inhibit phase synchronization when SCN neurons are tightly 

synchronized under standard laboratory lighting conditions, it serves to 

facilitate network re-synchronization when SCN neurons are 

desynchronized by light in vivo ( Evans et al., 2013). Interestingly, the 

change in the functional role of GABAA signaling under these lighting 

conditions is associated with an increase in the number of SCN 

neurons that display GABA-induced excitatory responses ( Farajnia et 

al., 2014 and Myung et al., 2015). Similarly, GABAA signaling can 

synchronize dissociated SCN neurons in vitro ( Liu and Reppert, 2000) 

and is involved in the transfer of resetting information from one SCN 

compartment to another ( Albus et al., 2005 and Han et al., 2012). 

Clearly, further work is required to define the conditions and 

mechanisms that determine the functional role of GABAA signaling in 

SCN coupling. 

Other mechanisms 

In the absence of VIP signaling, SCN neurons can be 

synchronized by AVP or GRP (Brown et al., 2005, Maywood et al., 
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2006 and Maywood et al., 2011). Although AVP is traditionally viewed 

as an output signal, AVP neurons provide signals that modulate 

network function to regulate the rate of recovery from simulated jetlag 

(Yamaguchi et al., 2013 and Mieda et al., 2015). On the other hand, 

GRP is mostly known for its role in processing photic signals (McArthur 

et al., 2000, Dardente et al., 2002, Antle and Silver, 2005 and Gamble 

et al., 2007), and its potential role in SCN coupling remains unclear. In 

addition to synaptic communication, electrotonic signaling through 

low-resistance gap junctions may also influence SCN synchrony by 

allowing the transmission of charged ions and other small molecules 

(e.g., cAMP) among cells in close apposition (Bennett et al., 1991, 

Rash et al., 2000, Rash et al., 2001 and Connors and Long, 2004). 

Gap junctions can be found in SCN neurons and glial cells, with the 

diffusion of labeled molecules (i.e., dye coupling) occurring mostly 

between cells within a SCN region (Welsh and Reppert, 1996, Jiang et 

al., 1997, Colwell, 2000, Jobst et al., 2004 and Long et al., 2005). 

When gap junctions are targeted pharmacologically, SCN electrical 

rhythms become broader, arrhythmic, or bimodal (Prosser et al., 

1994, Shinohara et al., 2000a, Shinohara et al., 2000b and Shirakawa 

et al., 2001). Bimodal rhythms also emerge in the presence of the glial 

metabolism antagonist, fluorocitrate (Prosser et al., 1994). These 

changes in the waveform of SCN electrical rhythms are thought to be 

due to altered communication among SCN neuronal subpopulations 

(Wang et al., 2014), although it remains unclear how this influences 

the functional properties of the network. Given the evidence for 

multiple SCN coupling mechanisms, it will be important to obtain 

detailed insight into how SCN neurons integrate the various signals 

produced by the network and the functional consequences of cross-

modal interactions revealed by previous work (Colwell, 2000, 

Shinohara et al., 2000b, Itri et al., 2004 and Wang et al., 2014). 

Formal assays for investigating the emergent properties 

of the complex clock 

The complex clock model was first inspired by changes in the 

waveform of circadian rhythms that manifest under certain 

environmental lighting conditions, such as seasonal changes in day 

length and constant light (LL) (Pittendrigh, 1974 and Pittendrigh and 

Daan, 1976b). Other analytical paradigms discovered since also imply 
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the existence of multiple, interacting oscillators within the SCN (e.g., 

simulated jetlag, non-24-h cycles, 24-h light:dark:light:dark (LDLD) 

cycles). By investigating circadian plasticity at the behavioral level, 

these formal assays are used to infer the structure of the complex 

clock and the properties of its constituent oscillators. A renewed focus 

on defining the neurobiological bases of circadian plasticity at the 

behavioral level may provide critical insight into SCN circuitry and may 

be used to test putative SCN coupling factors. However, the formal 

concepts embodied in the complex clock model should be updated and 

elaborated in order to provide refutable hypotheses for testing the role 

of different coupling mechanisms. Here we will use terminology 

originally adopted under the dual oscillator model for its utility, but this 

is intended to represent at least two populations of clock cells 

(Winfree, 1967, Pavlidis, 1973, Enright, 1980a, Strogatz, 

2003 and Izhikevich, 2007). In addition to providing insight into the 

nature and mechanisms of SCN coupling, the formal assays highlighted 

in this review may provide means to further distinguish SCN neuronal 

subpopulations. Moreover, further investigation into the bases of 

flexibility in circadian waveform may lead to novel approaches to 

mitigate the harm of circadian disruption in humans (Harrison and 

Gorman, 2012). 

Changes in circadian waveform after photoperiodic 

changes in day length 

Photoperiod influences myriad physiological and behavioral 

rhythms, including both reproductive and non-reproductive processes 

(Illnerova, 1991, Goldman, 2001 and Gorman et al., 2001a). In fact, 

there is a suite of diurnally and nocturnally phased events whose 

duration mirrors the length of the light and night portion of the LD 

cycle, respectively. The fact that numerous rhythms change in concert 

is taken as evidence that the central pacemaker itself is sensitive to 

photoperiod. For instance, the duration of melatonin secretion from the 

pineal gland is proportional to the length of the night, with a longer 

duration of release under winter-like short days compared to summer-

like long days. Likewise, the duration of locomotor activity (α) 

compresses under long days and expands under short days (Fig. 2A). 

Melatonin is an important driver of photoperiodic changes in 

physiological function in some species, but photoperiodic changes in α 
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do not require melatonin (Hastings et al., 1987 and Refinetti, 2002). 

This also is taken as evidence that the SCN itself is altered by 

changing day lengths. More direct measures of SCN function indicate 

that it does indeed encode photoperiod. For example, photoperiod 

modulates the length of the photosensitive phase of the circadian 

cycle, as determined by light-induced phase shifts and changes in SCN 

gene expression (Pohl, 1983, Pittendrigh et al., 1984, Pohl, 1984, 

Binkley and Mosher, 1986, Humlova and Illnerova, 1992, Travnickova 

et al., 1996, Vuillez et al., 1996, Illnerova and Sumova, 1997, Sumova 

and Illnerova, 1998 and vanderLeest et al., 2009). Proportional 

changes in SCN rhythms of diurnally expressed markers are also 

observed, with long days increasing the duration of SCN electrical 

firing, endogenous c-fos expression, and clock gene/protein production 

( Sumova and Illnerova, 1998, Jac et al., 2000, Jagota et al., 2000, 

Messager et al., 2000, Mrugala et al., 2000, Sumova et al., 2003, de la 

Iglesia et al., 2004b, Johnston et al., 2005, VanderLeest et al., 2007, 

Naito et al., 2008, Yan and Silver, 2008 and Brown and Piggins, 2009). 

The process of photoperiodic modulation of overt rhythms and SCN 

function can also be observed after release from long days to DD, 

which eliminates the masking influence of light (Fig. 2A). Following 

transfer to DD, circadian rhythms are said to “free-run” and reflect 

inherent period length (τ). At the same time, α increases in a 

systematic fashion after release into DD, with α expansion occurring as 

activity onset advances and activity offset delays each cycle. Advances 

in the onset of behavioral activity and melatonin secretion are highly 

correlated, as are the delays in their offsets, suggesting that a 

common mechanism underlies increases in both rhythms ( Elliott and 

Tamarkin, 1994). 
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Fig. 2. Photoperiodic modulation of circadian waveform. (A) Representative double-

plotted actograms illustrating changes in locomotor activity rhythms of Syrian 

hamsters held under long day and short day photoperiods before release into constant 
darkness. White and black bars above each actogram illustrate initial housing 
conditions, with the internal shading indicating the change in lighting conditions. Data 
replotted from (Evans et al., 2007). (B) Schematic representation of the complex clock 
model of Pittendrigh and Daan. 1. Under long day photoperiods, Evening (E) and 
Morning (M) oscillators define the times of activity onset and offset, respectively. E is 

phase delayed by light at dusk whereas M is phase advanced by light at dawn (lighting 
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bolts). The phase angle of E and M (φEM, internal red angle) determines the duration of 

nighttime locomotor activity (α, semi-circular brown bar). Importantly, α is inversely 
related to the duration of electrical and molecular activity of SCN neurons (blue 
spikes). 2. When transferred to short day photoperiods, E and M oscillators adopt 

different period lengths, <24 h and >24 h, respectively (solid arrows). Over time, this 
causes changes in φEM, increases α, and decreases the phase distribution of SCN 
neurons. 3. Stability in circadian waveform is established when E and M are re-
entrained by light. 4. Maximal expansion under constant darkness resembles that 
achieved under very short day photoperiods. (C) Conceptual model for a repulsive 
coupling mechanism. Top: Changes in φEM are caused by inherent differences in period 
(E < 24 h, M > 24 h) that cause E and M shift closer to one another over consecutive 

days (solid arrows). Bottom: Changes in φEM are ultimately limited by a repulsive 
coupling interaction between E and M (red shading) that causes each oscillator to shift 
in the direction opposite of their free-run (dashed arrows). The strength of this 
repulsive coupling interaction is expected to depend on φEM, as illustrated by changes 
in shading. D) Conceptual model for attractive coupling mechanisms. Top: Changes in 
φEM is caused by an attractive coupling interaction (green shading) between E and M 

that causes them to shift close to one another (dashed arrows). The strength of 
coupling is expected to depend on φEM, as illustrated by changes in shading. (E) 
Conceptual model for combined attractive and repulsive coupling mechanisms. In the 
combined model, both types of coupling interactions influence the steady state of the 
network. See text for more details. 

At the formal level of analysis, photoperiodic changes in 

circadian waveform are thought to reflect adjustments in the phase 

relationships between two distinct populations of clocks (Fig. 2B). 

Based on the differential control of activity onset and offset, these two 

clock populations have been labeled evening (E) and morning (M) 

oscillators. Since activity onset advances whereas activity offset delays 

under DD and short day lengths, it is theorized that E oscillators have 

τ < 24 h and M oscillators have τ > 24 h. According to this model, the 

inherent differences in τ alter the phase angle between E and M 

oscillators (φEM), which leads to increases in the duration of subjective 

night ( Pittendrigh, 1974, Illnerova, 1991, Elliott and Tamarkin, 

1994 and Gorman et al., 1997). It is further predicted that during 

entrainment, the E oscillator with τ < 24 h is decelerated daily by light 

at dusk and the M oscillator with τ > 24 h is accelerated daily by light 

at dawn. When day length changes, these resetting-actions of light 

would influence φEM (Fig. 2B), which is expected to alter the waveform 

of output signals from the SCN and the overt rhythms it programs 

(e.g., α, melatonin duration). Due to the reduced influence of photic 

cues under short days and DD, the changes that manifest are thought 

to due to inherent τ differences between E and M and/or φEM-

dependent coupling. 
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Typically, the duration of subjective night stabilizes under DD, 

which would not be expected if its expansion were determined solely 

by inherent differences in τ. Instead, the rhythms of independent free-

running oscillators would periodically diverge and converge to produce 

a “beating” pattern when monitored over many cycles. In contrast to 

this prediction, the maximal degree of subjective night expansion is 

relatively fixed under most conditions ( Hastings et al., 1987, Elliott 

and Tamarkin, 1994 and Gorman et al., 1997). In fact, DD-induced 

increases in α and melatonin secretion are typically proportional to the 

length of the scotophase under the previous LD cycle ( Illnerova, 

1991 and Elliott and Tamarkin, 1994), with little to no further 

expansion occurring after release from very short days (Fig. 2A). Thus, 

the systematic yet constrained pattern implies that coupling 

synchronizes the period of E and M to regulate φEM and prevent 

arrhythmia or “beating” from manifesting ( Pittendrigh and Daan, 

1976b, Illnerova, 1991 and Elliott and Tamarkin, 1994). 

Since its conception, this complex clock model has captured the 

interest of chronobiologists and inspired a search for the location of E 

and M oscillators. Based on this model, E and M oscillators are 

predicted to display (1) adjustable phase relationships dependent on 

photoperiod, (2) differential control over activity onset versus offset, 

and (3) inherent period differences with τE < 24 h < τM. Several 

studies investigating SCN electrical firing rhythms and clock 

gene/protein expression have identified subgroups of SCN neurons 

whose phase relationships are modulated by photoperiod, with these 

neuronal subgroups organized along a rostral-caudal axis and/or 

dorsal-ventral axis ( Jagota et al., 2000, Hazlerigg et al., 2005, 

Inagaki et al., 2007, Naito et al., 2008, Yan and Silver, 2008, Brown 

and Piggins, 2009, Evans et al., 2013 and Myung et al., 2015). 

Furthermore, studies have identified specific subgroups of SCN 

neurons within the rostral and caudal SCN that differentially control 

activity onset and offset (Inagaki et al., 2007). Lastly, period 

differences have been reported for SCN neurons located within discrete 

regions ( Shinohara et al., 1995, Noguchi et al., 2004, Noguchi and 

Watanabe, 2008 and Myung et al., 2012). Collectively, this work 

suggests that long photoperiods modulate the phase relationships 

between SCN neurons, but questions remain about this process and 

the underlying coupling mechanisms. 

http://dx.doi.org/10.1016/j.neuroscience.2016.01.072
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0485
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0290
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0290
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0425
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0545
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0545
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0290
http://www.sciencedirect.com/science/article/pii/S0306452216001159#f0010
http://topics.sciencedirect.com/topics/page/Cardiac_dysrhythmia
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0965
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0965
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0545
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0290
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0585
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0495
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0560
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0875
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1400
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0125
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0125
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0340
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0855
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0560
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1170
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0905
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0900
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0900
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0850


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuroscience, Vol 320 (April 21, 2016): pg. 259-280. DOI. This article is © Elsevier and permission has been granted for 
this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

19 

 

Important questions concerning the nature of this coupling 

process need to be addressed by additional studies. For example, the 

basic premise of τE < 24 h < τM of the original E-M model does not 

take into account the fact that α expansion under DD reflects the 

actions of a coupled system. Thus, DD-induced α expansion could be 

driven by inherent period differences OR by phase shifts produced by 

intercellular signaling factors. Although it has been extremely difficult 

to distinguish these two possibilities, this is a non-trivial issue that 

hinders insight into how SCN subgroups are interacting during 

photoperiodic changes in circadian waveform. For example, if α 

expansion is driven by inherent period differences, then coupling 

interactions need not engage until a specific φEM is achieved (Fig. 2C). 

In this case, coupling reflects an φEM-dependent interaction that resets 

E and M oscillators so that they synchronize with a similar period when 

in a specific relationship. In effect, this would limit further changes in 

φEM and prevent phase locking from manifesting (Fig. 2C). 

Alternatively, α expansion may not reflect inherent period differences 

but instead could be driven by intercellular interactions that cause E 

and M to reset one another (Fig. 2D). In this model, phase locking is 

prevented by φEM-dependent changes in coupling strength (Fig. 2D). 

Thus, both models involve a recursive mutual resetting process that is 

φEM-dependent ( Daan and Berde, 1978 and Oda and Friesen, 2002). 

Although pitted against one another here, it is worth noting that these 

two models are not mutually exclusive (Fig. 2E) and may be accounted 

for by a single coupling process that involves sinusoidal rhythms in 

resetting (Daan and Berde, 1978). Recent work has validated this 

general concept by demonstrating that SCN neurons can interact 

through φ-dependent resetting (Evans et al., 2013), and an important 

issue for future work is testing whether this type of “coupling response 

rhythm” varies with SCN subclass and/or environmental conditions. 

The conceptual models described above are designed to 

illustrate possible ways of envisioning the formal process of coupling, 

which is an important step toward defining its neurobiological basis. 

Although it remains untested whether the strength or nature of SCN 

coupling is systematically influenced by neuronal phase relationships, 

formal analyses may begin to examine this issue by investigating the 

rate of α expansion following release from different pretreatment 

conditions. Further, work suggests that distinct SCN factors promote 

period/phase synchrony (VIP) and desynchrony (GABA), and future 
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studies should test whether these factors influence photoperiodic 

plasticity in circadian waveform. It is clear that VIP signaling plays an 

important role in stabilizing circadian waveform in the absence of 

environmental time cues (Harmar et al., 2002 and Colwell et al., 

2003), but additional work should test whether the DD phenotype of 

VIP-deficient mice is caused directly by loss of the VIP-related 

synchronizing cue or indirectly by a GABA-related desynchronizing 

signal (Freeman et al., 2013). Moreover, VIP knockout mice fail to 

maintain photoperiodic changes in α and SCN electrical activity upon 

release into DD (Lucassen et al., 2012), but the strength of rhythms 

displayed by VIP mice is enhanced by short day entrainment. In 

addition to short day lengths, rhythms of VIP-deficient mice are 

improved by LL and use of a running-wheel (Power et al., 

2010 and Hughes et al., 2015). Although the neurobiological basis 

remains unclear, it should be investigated whether these 

environmental conditions restore rhythmicity in VIP-deficient mice by 

changing the strength of other SCN coupling factors. When paired with 

manipulation of specific signaling mechanisms, formal analyses of 

photoperiodic plasticity in circadian waveform has the potential to shed 

new light on the process and mechanisms underlying SCN coupling. 

Changes in circadian waveform under LL 

Support for the complex clock model also derived from the 

observation that locomotor activity rhythms could dissociate into 

multiple components under LL conditions (Pittendrigh and Daan, 

1976b). In nocturnal rodents, LL lengthens τ, compresses α and 

decreases locomotor activity levels ( Aschoff, 1960). In addition, 

chronic exposure to LL can induce a temporal reorganization known as 

“splitting” (Fig. 3), which is characterized by two bouts of rest and 

locomotor activity per circadian cycle ( Morin and Cummings, 1982, 

Turek et al., 1982, Cheung and McCormack, 1983, Lees et al., 1983, 

Boulos and Morin, 1985, Meijer et al., 1990, Puchalski and Lynch, 

1991b, Pickard et al., 1993 and Lax et al., 1998). While the LL-induced 

split is emerging, the two activity components may free-run with 

different circadian periods, one shorter and the other longer than 24 h. 

However, when the two activity bouts reach antiphase, the split 

rhythm stabilizes such that two distinct activity components are 

maintained. After transfer from LL to DD, the two activity bouts rapidly 
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rejoin, with unsplit activity rhythms re-emerging after a brief interval 

(Earnest and Turek, 1982). The presence of activity bouts with distinct 

period lengths during induction and resolution of the LL-induced split 

was taken as evidence that this reflects the actions of multiple clocks 

cycling in antiphase. That these clocks were located within the master 

clock itself was further based on observations that overt rhythms 

besides locomotor activity are likewise split under LL ( Shibuya et al., 

1980, Pickard et al., 1984 and Swann and Turek, 1985) and that SCN 

electrical rhythms were bimodal in LL-split animals ( Mason, 

1991 and Zlomanczuk et al., 1991). It is worth noting that the 

incidence of splitting under LL is influenced by many different factors, 

including LL intensity, species, sex, age and wheel running. In some 

animals chronic LL will cause the complete loss of circadian rhythmicity 

(Fig. 3), with ultradian rhythms thought to reflect the independent 

programs of many desynchronized SCN neurons ( Honma and 

Hiroshige, 1978, Mason, 1991 and Lax et al., 1998). Lastly, some 

inbred strains of mice display spontaneous splitting under conditions of 

DD rather than LL, although this phenotype appears to arise due to 

reorganization of non-SCN clocks ( Abe et al., 1999 and Abe et al., 

2001). 
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Fig. 3. Modulation of circadian waveform under constant light (LL) conditions. 

Representative double-plotted actograms illustrating changes in circadian waveform of 
Syrian hamsters (left) and mice (right) during exposure to LL. White bars above each 
actogram illustrate lighting conditions. Hamster and mouse data are replotted from 
(Gorman, 2001) and (Evans et al., 2012b), respectively. 

The neurobiological basis of LL-induced split rhythms has been 

localized to antiphase oscillations of the left and right lobes of the SCN 

(de la Iglesia et al., 2000, de la Iglesia et al., 2003, Ohta et al., 2005, 

Yan et al., 2005 and Butler et al., 2012), which are connected by 

contralateral projections extending across the midline (Moore and 

Leak, 2001). Consistent with the idea that each split bout is generated 

by a separate lobe, unilateral SCN lesions can cause the emergence of 

an unsplit rhythm (Pickard and Turek, 1983), although lesions of non-

SCN tissue can produce similar effects (Harrington et al., 1990). 

However, temporal dissociation of left and right SCN may not be the 

exclusive means by which splitting arises because animals sustaining 

unilateral SCN lesions can display LL-induced split rhythms (Davis and 

Gorski, 1984). Further, Siberian hamsters split by LL do not display 

antiphase electrical rhythms in the left and right SCN, which suggests 

rearrangement of SCN neurons within each lobe (Zlomanczuk et al., 
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1991). Consistent with this, LL-split hamsters display antiphase 

rhythms in the shell and core of each SCN lobe as well as antiphase 

rhythms between lobes (Yan et al., 2005 and Butler et al., 2012); 

however, it remains unknown if this pattern generalizes to other 

species. 

Although photoperiodic and LL-induced modulations of circadian 

waveform both provide support for the concept of the SCN being a 

complex comprised of multiple interacting clocks, some studies 

suggest that photoperiodic and LL-induced changes in circadian 

waveform are mediated by distinct neurobiological mechanisms. For 

instance, E and M oscillators are modeled as differentially controlling 

activity onset and offset, but the left and right SCN provide redundant 

programing (Davis and Gorski, 1984 and Davis and Viswanathan, 

1996). Also, photoperiod does not alter the phase relationship between 

left and right SCN (de la Iglesia et al., 2004b) and unilateral SCN 

lesions do not compromise photoperiodic changes in gonadal function 

(Hastings et al., 1987). The relationship between photoperiodism and 

LL-induced splitting remains difficult to test because these two 

paradigms involve incompatible experimental conditions and bright LL 

masks many overt rhythms in nocturnal rodents that are highly 

informative (e.g., suppression of melatonin secretion). Thus, it 

remains possible that these two forms of plasticity are fundamentally 

distinct in terms of their underlying coupling mechanisms. 

Despite progress in identifying the neuroanatomical substrate(s) 

for LL-induced rhythms, the process by which the SCN reorganizes 

under LL remains unclear. Under the original complex clock model, the 

two split bouts under LL were originally labeled E and M because in 

some records the split activity bouts appeared to derive from the 

evening and morning portions of the unsplit activity rhythm (Earnest 

and Turek, 1982, Morin and Cummings, 1982, Swann and Turek, 

1982 and Lees et al., 1983). However, this is not always the case and 

in some records the origin of the split bouts is unclear (e.g., Fig. 3). 

Although the neurobiological evidence discussed above indicates that 

subsets of E and M oscillators likely control each split bout, it was 

originally hypothesized that LL lengthened τE and shortened τM to 

cause reductions in φEM and α compression ( Pittendrigh, 

1974 and Pittendrigh and Daan, 1976b). Alternatively, it has been 

proposed that LL-induced splitting could reflect light-induced changes 
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in the strength and/or nature of the coupling process ( Daan and 

Berde, 1978, Kawato and Suzuki, 1980 and Oda and Friesen, 2002). It 

remains unclear precisely what causes the activity rhythm to split into 

two synchronized bouts that cycle in antiphase, but this may involve 

changes in coupling that involve either attractive or repulsive 

interactions ( Daan and Berde, 1978 and Oda and Friesen, 2002). 

Thus, this phenomenon may be modeled using conceptual processes 

like those postulated to regulate photoperiodic modulation of circadian 

waveform. 

An important issue for future work will be to understand 

precisely how LL influences coupling between SCN neurons to 

fragment circadian waveform into split and arrhythmic patterns. Little 

is known about how SCN signaling changes during LL-induced splitting 

and arrhythmia, which may reflect the fact that these forms of 

plasticity develop over a long period time with little experimental 

control. Previous research has demonstrated that VIP in rats is 

downregulated by acute light exposure and 3-wk exposure to LL 

(Albers et al., 1987, Shinohara et al., 1993, Isobe and Nishino, 

1998 and Shinohara et al., 1999). However, it is unknown if VIP levels 

rebound during long-term LL exposure like that necessary to induce 

splitting and arrhythmia. Further, the depressive effects of light on VIP 

may not generalize to other rodent species (Dardente et al., 2004). It 

may be possible to test whether downregulation of VIP under LL 

provides the impetus for loss of synchronization that occurs during LL-

induced arrhythmia, but this mechanism fails to fully account for the 

observation that split bouts are able to synchronize once aligned into 

an anti-phase configuration. Another possibility is that the emergence 

of LL-induced splitting reflects coupling mechanisms that resist light-

driven α compression through a repulsive type of interaction. Further 

work is needed to understand how LL may influence SCN coupling. 

One way in which this question can be addressed is by systemically 

evaluating the effects of chronic light on putative SCN coupling factors 

and testing whether down/up regulation is causally related to LL-

induced plasticity in circadian waveform. Given the species differences 

in the incidence and thresholds for LL-induced splitting, future studies 

may also benefit from a comparative approach using a variety of 

nocturnal and diurnal models. 
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Changes in circadian waveform after light-induced 

resetting 

The SCN receives light cues that allow it to synchronize to local 

time (Meijer and Schwartz, 2003). Photic entrainment is mediated by a 

circadian rhythm in light sensitivity described in the photic phase 

response curve (PRC), which illustrates how light applied at different 

phases of the circadian cycle shifts the phase of overt rhythms 

(Johnson, 1999). Specifically, light pulses early in subjective night 

produce phase delays, light pulses late in subjective night produce 

phase advances, and light pulses during the subjective day produce 

negligible effects. In nocturnal rodents, light pulses also produce acute 

changes in circadian waveform that depend on the direction of phase 

resetting (Fig. 4A). Following late night light pulses, activity/melatonin 

offset advances readily but activity/melatonin onset requires several 

cycles to shift completely (Boulos and Rusak, 1982, Honma et al., 

1985, Illnerova and Vanecek, 1987 and Meijer and De Vries, 1995). 

The different resetting kinetics of distinct phase markers causes the 

emergence of “transient” cycles where subjective night is compressed, 

which is resolved as activity onset shifts gradually over subsequent 

days (Fig. 4A). In extreme cases, transient cycles may be 

characterized by the complete loss of nocturnal events, such as 

melatonin secretion (Illnerova and Vanecek, 1987). In contrast, α 

compression is less pronounced during light-induced phase delays 

because both phase markers reset with similar kinetics following a 

light pulse applied during early night (Fig. 4A). Direction-dependent 

transients in circadian waveform also emerge following shifts of the LD 

cycle that simulate travel across time zones (Fig. 4B), although shifts 

in activity onset and offset are oftentimes masked by light under these 

conditions. 
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Fig. 4. Plasticity in circadian waveform during light-induced resetting (A), simulated 

jetlag (B), photoperiodic non-responsiveness (C), skeleton photoperiods (D), LDLD 

cycles (E), and multi-model lighting conditions (F). Data in panel A are from (Evans et 

al., 2007), panel B are from (Evans et al., 2009), panel C are from (Gorman and 

Elliott, 2004), panels D-E are from (Evans et al., 2005), and panel F are from (Evans & 

Gorman, unpublished observations). 

Differential photic resetting also occurs within the SCN itself, 

with distinct resetting patterns evident between different clock genes 

and SCN regions. In hamsters, the evening and morning peaks of SCN 

electrical activity specifically detected in a horizontal slice preparation 

are differentially shifted by application of glutamate in vitro ( Jagota et 
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al., 2000). Furthermore, discrepancies in resetting are evident among 

different SCN clock gene/protein rhythms ( Sumova and Illnerova, 

1998, Zylka et al., 1998, Reddy et al., 2002, Yan and Silver, 

2002 and Yan and Silver, 2004). In addition, SCN regional differences 

in the rate of re-entrainment have been reported in both the advance 

and delay direction ( Nagano et al., 2003, Nagano et al., 2009, Albus 

et al., 2005, Nakamura et al., 2005, Davidson et al., 2009, Rohling et 

al., 2011 and Sellix et al., 2012). Results of bioluminescence imaging 

with real-time reporters of clock protein indicate that the SCN core 

shifts faster than the SCN shell after a 6-h advance of the LD cycle 

(Sellix et al., 2012), but the spatiotemporal kinetics of re-entrainment 

in the delay direction have yet to be examined with this approach. 

At the formal level of analysis, light-induced changes in 

circadian waveform have been interpreted within the context of the 

complex clock model. According to this model, direction-dependent 

resetting kinetics reflect differences in the light sensitivity of E and M 

and their mutual coupling strength (Boulos and Rusak, 1982, Honma 

et al., 1985, Illnerova, 1991 and Meijer and De Vries, 1995). In the 

case of differential light sensitivity, the immediate phase advance of 

activity offset suggests that M is highly sensitive to light provided 

during late subjective night, while the sluggish response of activity 

onset indicates E is less sensitive to light at this phase. That the 

steady state phase shift of onset often equals that for offset has been 

interpreted as evidence for coupling between E and M (Illnerova, 

1991 and Meijer and De Vries, 1995), but this process remains ill 

defined. Subsequent decompression of α during transient cycles could 

be explained by coupling that promotes period synchrony (Fig. 2D) or 

desynchrony (Fig. 2C) in an φEM-dependent manner. Conversely, 

neither process can account for the lack of delaying transients, unless 

(1) E and M are equally responsive to light presented during early 

subjective night or (2) there is an asymmetry in the mutual coupling 

between E and M (Illnerova, 1991). 

Given the translational appeal in better understanding this 

process, there are a number of things that could be addressed in 

future work. First, a detailed understanding of how putative E and M 

oscillators respond to photic stimuli could be used to test whether they 

are characterized by distinct PRCs. Formal analyses may also provide 

insight by testing whether nonphotic resetting is similarly marked by 
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transients. The results of such a study may provide insight into 

whether direction-specific resetting reflects a general feature produced 

by fundamental differences in the ability of underlying oscillators to 

reset one another. Conversely, if this phenomenon reflects that E and 

M have different photic PRCs, then there is little reason to suspect that 

nonphotic phase shifts will involve transients or that those that might 

emerge will bear any similarity to light-induced advancing transients. 

Furthermore, future studies can be designed to compare and contrast 

the paradigms presented in the proceeding two sections (i.e., changes 

in circadian waveform after release into DD and after discrete light 

pulses) in order to resolve whether they reflect identical or disparate 

processes. Lastly, studies should investigate whether specific SCN 

coupling factors influence the kinetics of photic re-entrainment. 

Although transients are not commonly quantified, it is of interest that 

the rate of re-entrainment is accelerated by either a gain in VIP 

signaling (Shen et al., 2000 and An et al., 2013) or a loss of AVP 

signaling (Yamaguchi et al., 2013 and Mieda et al., 2015). A re-

examination of light-induced transients in the context of altered SCN 

signaling may provide insight, as would studies that couple these 

manipulations with approaches that quantify the associated changes in 

SCN spatiotemporal organization. 

Photoperiodic non-responsiveness 

Within many rodent species, some animals fail to adopt the 

typical short day phenotype of reproductive quiescence, and are 

commonly referred to as short day nonresponders (NRs) (Nelson, 

1987). In Siberian hamsters, insensitivity to short day lengths has a 

circadian basis (Puchalski and Lynch, 1988, Puchalski and Lynch, 

1991a, Puchalski and Lynch, 1991b, Puchalski and Lynch, 1994, 

Freeman and Goldman, 1997, Gorman et al., 1997, Gorman and 

Zucker, 1997, Prendergast and Freeman, 1999 and Gorman and 

Elliott, 2004). NR Siberians express both a short α (Fig. 4C) and a 

short melatonin signal under short day lengths, with each rhythm 

phase locked to dawn in the large majority of animals (Puchalski and 

Lynch, 1986, Margraf et al., 1991, Margraf and Lynch, 1993, Gorman 

et al., 1997, Gorman and Zucker, 1997, Prendergast and Freeman, 

1999 and Gorman and Elliott, 2004). A complementary pattern can be 

seen in the rhythm of spontaneous electrical activity within the SCN of 
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NR Siberian hamsters (Margraf et al., 1991). NR Siberian hamsters 

display short day responses if long melatonin infusions are provided; 

indicating that peripheral sensitivity is intact but that the appropriate 

signal is absent in these animals (Margraf and Lynch, 1993). Further, 

Siberian hamsters from artificially selected NR lines, if raised in DD or 

a short day photoperiod, can exhibit photoperiodic responsiveness 

under short day lengths (Stanfield and Horton, 1996, Freeman and 

Goldman, 1997 and Goldman and Goldman, 2003). Lastly, pre-

treatment to very long day lengths can cause unselected animals to 

display a state of short day nonresponsiveness qualitatively similar to 

that produced by artificial selection (Freeman and Goldman, 1997, 

Gorman et al., 1997, Gorman and Zucker, 1997, Prendergast and 

Freeman, 1999 and Goldman et al., 2000). Collectively, these data 

suggest that the NR phenotype in Siberian hamsters is caused by a 

fundamental change in the function of the SCN that limits plasticity in 

circadian waveform. 

The nature of the change in the SCN that causes short day 

nonresponsiveness remains unclear. It has been proposed that short 

day nonresponsiveness may reflect a change in τ and/or altered 

coupling ( Puchalski and Lynch, 1991b, Puchalski and Lynch, 

1994 and Gorman and Zucker, 1997). As described above, it is 

theorized that photoperiodic expansion of α reflects inherent 

differences in the period of E and M, with τE < 24 h < τM. One possible 

explanation of photoperiodic non-responsiveness contends that 

lengthening of τE causes it to be > 24 h, which lengthens overall τ and 

inhibits the ability to expand α under short days. Consistent with this 

hypothesis, it has been reported that animals from artificially selected 

NR lines will display gonadal regression under LD cycles >24 h 

(Puchalski and Lynch, 1994). However, a lengthened τ is not always 

observed in NR Siberian hamsters, and it has been suggested that a 

change in the coupling between E and M oscillators may constrain 

increases in φEM in these animals. Originally, it was postulated that NR 

animals have stronger coupling; however, it remains difficult to specify 

changes in coupling strength given the possibility of both 

synchronizing and desynchronizing signaling mechanisms. Given the 

utility of exploring this phenotype further, future studies may benefit 

from recent advances that could allow for genetic manipulations in this 

species ( Hsu et al., 2014 and Sander and Joung, 2014). 
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Changes in circadian waveform under skeleton 

photoperiods and the phenomena of “phase jumps” 

Under skeleton photoperiods, the full photophase is replaced 

with two short light pulses simulating light transitions at dusk and 

dawn (Fig. 4D). These conditions have ecological relevance for 

nocturnal rodents that primarily receive light exposure as they emerge 

from and return to darkened burrows. Skeleton photoperiods also 

serve as useful analytic tools for studying seasonal changes in 

pacemaker function, since long and short day lengths are simulated 

with equivalent light exposure. For the most part, entrainment under 

skeleton photoperiods resembles that elicited by full photoperiods, 

except when the former simulates very long day lengths (Pittendrigh 

and Daan, 1976a). A “phase jump” occurs under these conditions 

(Fig. 4D), where activity onset crosses one of the entraining light 

pulses and α realigns within the longer of the two available 

scotophases (Pittendrigh and Daan, 1976a, Rosenwasser et al., 1983, 

Stephan, 1983, Sharma et al., 1997 and Evans et al., 2005). In 

contrast, phase jumps rarely occur under comparable full 

photoperiods, suggesting that the continued light exposure contributes 

to stable entrainment under very long day lengths (Pittendrigh and 

Daan, 1976a and Pittendrigh and Daan, 1976b). 

Previous models have largely accounted for phase jumps 

through an asymmetry in the phase delay and advance regions of the 

photic PRC (Pittendrigh and Daan, 1976a, Stephan, 1983 and Sharma 

et al., 1997). These early models, however, do not take into account 

photoperiod-induced changes in the amplitude of the photic PRC, 

where reduced phase shift magnitude correlates with decreases in α 

(Pohl, 1983, Pittendrigh et al., 1984, Pohl, 1984 and Shimomura and 

Menaker, 1994). Therefore, during entrainment to very long day 

lengths, like those simulated under skeleton photoperiods, light-

induced phase shifts are markedly attenuated and less clearly able to 

generate phase jumps. Mutual coupling mechanisms may account for 

the emergence of phase jumps under skeleton photoperiods 

(Pittendrigh and Daan, 1976b and Evans et al., 2005). As α is 

compressed, a phase jump could emerge as φEM decreases through 

either a loss of period synchrony or by more direct repulsive 

interaction. After the initiation of the phase jump, φEM would increase, 

http://dx.doi.org/10.1016/j.neuroscience.2016.01.072
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0306452216001159#f0020
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#f0020
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1075
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1210
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1125
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0310
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0965
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0960
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1210
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1125
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1125
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0975
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0970
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0980
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1155
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b1155
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0965
http://www.sciencedirect.com/science/article/pii/S0306452216001159#b0310


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuroscience, Vol 320 (April 21, 2016): pg. 259-280. DOI. This article is © Elsevier and permission has been granted for 
this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

31 

 

which would allow for synchrony and complete realignment into the 

alternative scotophase. As the alternative scotophase is typically 

longer than its counterpart, E and M can then adopt the φEM that is 

more conducive to stable entrainment. Very long day lengths 

incorporating full photophases may inhibit phase jumps by countering 

the oscillator interactions that instigate the jump. These photic effects 

may impose long-term changes in circadian function like that 

described above (e.g., NR phenotype in Siberian hamsters) by 

increasing τE and/or by changing φEM-dependent mutual coupling 

mechanisms. Further study of phase jumping may thus serve to 

characterize changes induced by exposure to simulated long day 

lengths and examine conceptual models of φEM-dependent interactions. 

Forced desynchrony under non 24-h LD cycles 

As discussed in the preceding sections, adaptive phase 

relationships of oscillators may be the product of coupling processes. 

But if pacemakers are subjected to non-ecological conditions (e.g., LD 

cycles markedly longer or shorter that 24 h), coupling may not be 

sufficient to maintain a coherent rhythm. Indeed, there exists a range 

of environmental frequencies with which the circadian pacemaker can 

resonate. The range of non-24-h LD cycles (i.e., T cycles, where 

T = period of the external cycle) to which a given species of mammals 

can synchronize can be predicted by τ and the photic PRC typical of 

that species. Further, a collection of oscillators marked by 

heterogeneous τ would be predicted to differentially entrain to non-24-

h T cycles ( Shinbrot and Scarbrough, 1999). For example, oscillators 

with τ close to T would be expected to entrain, whereas oscillators with 

τ markedly deviating from T would be expected to free-run. Long-term 

records of such rhythms would be predicted to have at least two 

dominant rhythms that beat in and out of phase with one another. 

Support for these predictions can be found in the activity rhythms of 

rats held under short T cycles (T21-T22), which is near the lower limit 

of entrainment for this species ( Vilaplana et al., 1997a, Campuzano et 

al., 1998, Cambras et al., 2000 and Cambras et al., 2004). In these 

records, a non-entrained activity component with τ > 24 h appears to 

be superimposed onto another activity rhythm entrained to the lights-

off transition of the T cycle. When the two activity bouts cross, they 

exhibit relative coordination (Schwartz et al., 2009). When T 
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approaches 24 h, this pattern is altered in that the entrained 

component becomes more robust and the non-entrained activity band 

diminishes. Measures of subsequent free-running rhythms and 

anticipatory activity preceding the lights-off transition indicate that 

these patterns of activity do not result solely from the masking effects 

of light. Instead, these “beating” patterns are thought to reflect that 

the master clock is partially entrained, which has been supported by 

investigations revealing that the SCN shell and core are 

desynchronized under these conditions (de la Iglesia et al., 2004a). 

Importantly, differential gene expression in these SCN regions appears 

to persist temporarily after release into DD, arguing against a pure 

masking effect by light and darkness. To date, the forced desynchrony 

paradigm has been used to provide new insight into the function of 

outputs specifically produced by SCN shell and core compartments 

( Lee et al., 2009, Schwartz et al., 2009, Smarr et al., 2012 and Wotus 

et al., 2013), as well as the propagation of resetting signals within the 

SCN network (Schwartz et al., 2010). It remains unclear if analogous 

behavior is observed in other species, but if the rat is unique in its 

expression of this behavior, then this may provide an interesting 

comparative approach for studying circuit properties that enable this 

form of plasticity. In addition, investigating the process of 

desynchronization and resynchronization using the forced desynchrony 

model may provide novel insight into SCN coupling mechanisms. 

Bifurcated rhythms under 24-h LDLD cycles 

Exposure to 24-h LDLD cycles generates bifurcated rhythms, 

where each activity bout is entrained to one of the daily dark periods 

(Fig. 4E). A variety of protocols using 24-h LDLD cycles rapidly induces 

bifurcated rhythms in hamsters and mice (Mrosovsky and Janik, 1993, 

Gorman, 2001, Gorman and Lee, 2001, Gorman and Elliott, 2003, 

Gorman and Elliott, 2004, Gorman et al., 2003 and Evans et al., 

2005). The first procedure for generating bifurcated rhythms under 

LDLD cycles utilized scheduled exposure to novel wheel running (NWR) 

during the subjective daytime (Mrosovsky and Janik, 1993, Gorman 

and Lee, 2001 and Evans and Gorman, 2002). This protocol is also 

referred to as behavioral decoupling to acknowledge the role of 

scheduled wheel running and to distinguish it from LL-induced splitting 

(Mrosovsky and Janik, 1993). Comparable split rhythms also emerge 
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without NWR when animals are exposed to a LDLD cycle with two, 

short scotophases of equal duration (Gorman, 2001). Both activity 

bouts under LDLD correspond to physiological indices of subjective 

night (e.g., melatonin secretion and light-induced gene expression) 

and subjective night markers are absent during the intervening bouts 

of behavioral quiescence (Gorman et al., 2001b, Edelstein et al., 

2003 and Raiewski et al., 2012). Moreover, LDLD-induced bifurcated 

rhythms rejoin after release into DD through a series of transients, 

suggesting that each LDLD activity bout is programed by a separate 

group of oscillators. Of interest, 24-h LD cycles with more than two 

scotophases induce multi-modal rhythms in rats (Vilaplana et al., 

1997b) and hamsters (Fig. 4F). Several factors are postulated to 

contribute to the emergence of bifurcated rhythms under LDLD 

(Gorman et al., 2003 and Evans et al., 2005). First, robust novelty-

induced wheel running is thought to shift a subset of oscillators into 

the daytime scotophase through nonphotic resetting (Mrosovsky and 

Janik, 1993, Gorman and Lee, 2001 and Evans and Gorman, 2002). 

Second, the short nighttime scotophase under LDLD challenges 

entrainment and may instigate a phase jump of a subset of oscillators 

into the daytime scotophase (Pittendrigh and Daan, 1976a, Stephan, 

1983 and Evans et al., 2005). As postulated to occur under skeleton 

photoperiods, a phase jump may be instigated by a change in the 

interactions between constituent oscillators that cause component 

oscillators to repel one another. However, under LDLD, the alternative 

scotophase is not of sufficient length to complete the phase jump, 

which promotes a stably bifurcated state. 

Formal and physiological data indicate that exposure to LDLD 

produces bifurcated rhythms that are distinct from LL-induced split 

rhythms. First, LDLD-induced bifurcated activity bouts rejoin upon 

transfer to LL, which will independently induce splitting within several 

weeks (Gorman, 2001). Further, there is no indication of a left-right 

asymmetry in the SCN during LDLD-induced bifurcation, rather light-

induced c-fos and Period gene expression is observed throughout both 

lobes of the SCN ( Gorman et al., 2001b, Edelstein et al., 2003, 

Watanabe et al., 2007 and Yan et al., 2010). Thus, there is reason to 

believe that LDLD-induced bifurcation arises from the dissociation of 

oscillators operating within each lobe of the SCN, although their 

precise location remains undetermined. 
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Advancing the current working model of the SCN 

complex 

Multiple clock populations within the SCN network 

The classic multi-oscillator model first described by Colin 

Pittendrigh has received wide acclaim since its formal introduction. As 

described in the preceding sections, there is a large body of 

neurobiological evidence supporting the theory that the SCN contains 

multiple independent and heterogeneous oscillators. Analysis of SCN 

rhythmicity after exposure to changing environmental conditions 

indicates that the SCN network can be temporally reorganized in a 

variety of ways, with complex patterns sometimes emerging within the 

same paradigm. For instance, LL-induced splitting is associated with 

antiphase oscillations of the left and right SCN lobe, but also antiphase 

oscillations of shell and core regions within each lobe (Mason, 1991, de 

la Iglesia et al., 2000, de la Iglesia et al., 2003, Ohta et al., 2005, Yan 

et al., 2005 and Butler et al., 2012). Further, there is evidence that 

photoperiodic modulation of circadian waveform corresponds with 

changes in the phase relationships of SCN neurons within the rostral 

and caudal poles of the network, but also those within the shell and 

core compartments (Jagota et al., 2000, Hazlerigg et al., 2005, 

Inagaki et al., 2007, Naito et al., 2008, Yan and Silver, 2008, Brown 

and Piggins, 2009, Evans et al., 2013 and Myung et al., 2015). Lastly, 

forced desynchrony corresponds to dissociated rhythms in the shell 

and core compartments of the rat, which do not stably reorganize as in 

other behavioral paradigms (de la Iglesia et al., 2004a). The plurality 

of ways in which the SCN network can be rearranged suggests that 

multiple sub-populations exist. Intra- and inter-SCN coupling 

mechanisms are likely differentially sensitive to factors operating 

under these distinct behavioral paradigms, which warrants further 

study. Real-time imaging of molecular rhythmicity has proved to be an 

important technique for revealing subgroups of SCN neurons; 

however, it should be noted that ex vivo preparations usually reduce 

the complexity of the SCN network and therefore may not capture all 

aspects of its circuitry. Further technological advances that allow for 

real-time visualization of SCN function while the network is fully intact 

and integrated into the larger system is expected to provide important 

insight into network function (Hamel et al., 2015). 
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The formal assays highlighted in this review may be exploited 

further to distinguish SCN neuronal subpopulations and define the 

processes by which they interact. If the objective is to localize 

functionally distinct oscillators within the SCN in order to study their 

connections, intrinsic differences, and interactions, the best paradigms 

with which to pursue this goal may be those involving photoperiodism, 

LDLD-induced bifurcation, and forced desynchrony, since these 

paradigms appear to disassociate functionally and anatomically distinct 

oscillators operating within each lobe of the SCN. Convergent analyses 

using these paradigms may elucidate distinct subgroups of oscillators 

that regulate overt periodicity and circadian waveform through their 

interactions. Furthermore, comparative studies are needed to 

investigate whether the coupling processes modulating circadian 

waveform are distinct for the different behavioral assays discussed in 

this review. Previous work using the Siberian hamster demonstrates a 

clear relationship between plasticity in circadian waveform across 

three specific behavioral assays (i.e., photoperiodic responsiveness, 

LDLD-induced bifurcation, and arrhythmia under constant dim lighting 

conditions), which suggests that these are regulated by a common 

underlying coupling mechanism (Evans et al., 2012a). In contrast, 

circadian plasticity in these three assays was not related to changes in 

circadian waveform that emerged immediately after release from 

entrained to constant conditions or during light-induced resetting 

transients. This pattern of results suggests that these latter behavioral 

assays may reflect the actions of coupling mechanisms that are 

distinct. Given the known species differences in the behavioral 

response to the behavioral assays discussed in this review, a 

comparative approach investigating SCN circuitry in non-murine 

species may be useful. Future studies may benefit from recently 

developed methods (Hsu et al., 2014 and Sander and Joung, 2014) 

that allow for genetic manipulations in non-murine animal models that 

display interesting behavioral phenotypes indicative of unique coupling 

of SCN oscillators (e.g., the hamster). Research incorporating both 

nocturnal and diurnal animal models is likewise of interest. 

Influence of light on SCN coupling 

Under each of the paradigms presented above, photic 

stimulation was a critical agent influencing circadian waveform. Under 
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unconventional photic conditions, bi-stability (LL, LDLD) or 

desynchronization (LL, non 24-h T cycles) can emerge depending on 

the intensity and/or duration of illumination (Pickard et al., 1993, 

Gorman et al., 2003, Gorman et al., 2005, Cambras et al., 2004, 

Gorman and Elliott, 2004 and Rosenthal et al., 2005). While bright 

light is necessary for splitting under LL, dim nighttime illumination 

appears to be a pivotal factor influencing circadian plasticity under 

short day photoperiods, skeleton photoperiods, simulated jetlag, LDLD, 

and non 24-h T cycles (Gorman and Elliott, 2004, Evans et al., 2005, 

Evans et al., 2009 and Gorman et al., 2005). Many questions remain 

about how light produces these effects. For example, does bright and 

dim light influence circadian plasticity by directly influencing mutual 

coupling mechanisms or does it alter the inherent period of SCN 

neurons? Do different subtypes of SCN neurons exhibit differences in 

their sensitivity and/or nature of responses to light? How is photic 

information being processed and propagated through the SCN network 

(Antle et al., 2003)? 

While the present discussion focuses on changes in circadian 

waveform, the analytical paradigms presented in the preceding 

sections often produce changes in τ, commonly referred to as circadian 

aftereffects. For example, exposure to LL both lengthens overt τ and 

changes circadian waveform. Does light influence α and τ via a 

common mechanism or are these effects produced through distinct 

means? Simulations using mathematical models with separate 

parameters modulating the collective frequency and relative phase of 

coupled nonlinear oscillators suggest that either parameter can be 

used to synchronize a population of high frequency nonlinear 

oscillators ( Shinbrot and Scarbrough, 1999). Behavioral and 

physiological studies addressing circadian responses to light may 

attempt to disentangle photic effects on τ and circadian waveform in 

order to further address the role of light in modulating circadian 

plasticity under the above paradigms. 

Alternatives to the complex clock model 

Over the years, alternative models to the complex clock have 

been proposed to account for specific behavioral phenotypes. 

Prominent among these alternative models are those that posit the 
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circadian system contains a “gate” that regulates the expression of 

overt rhythmicity and can be modulated by external conditions to 

affect circadian waveform. This type of model has been largely invoked 

to account for photoperiodic changes in circadian waveform, where 

short day photoperiods may lower the threshold of the gate and 

thereby produce the expansion of subjective night through seemingly 

independent periodicities of its onset and offset. Accordingly, short day 

NR animals could have more rigid thresholds; however, this model is 

less able to account for the phase angle of entrainment displayed by 

the majority of NR animals (i.e., locked to lights-on or lights-off). 

Mathematical models where overt rhythmicity is controlled by the 

actions of multiple oscillators with variable τ and gated by a threshold 

have been used to simulate a wide variety of circadian behaviors ( de 

la Iglesia et al., 2004b, Enright, 1980a, Enright, 1980b and Shinbrot 

and Scarbrough, 1999). Under this premise, a population of oscillators 

with variable τ could form a highly precise, functional pacemaker 

through the collective actions of multiple, imprecise short-term 

oscillators. The emergent “neuronal” rhythm may be used to regulate 

output from the system through the electrical firing pattern of the SCN 

neurons themselves ( Shinbrot and Scarbrough, 1999), or through the 

actions of a “discriminator” node that need not be inherently rhythmic 

(Enright, 1980b). In this latter model, direct interactions between 

individual oscillators are not necessary, if the discriminator can 

influence the period and/or phase of all the oscillators within the 

population (Enright, 1980a). This discriminator model may bear on the 

organization of the central pacemaker, being similar to one of the 

functions proposed for the calbindin-immunoreactive sub-nucleus 

within the hamster SCN (Antle et al., 2003). Thus, it stands to reason 

that alternative models should be considered as potentially relevant 

elements of SCN circuits, regardless of the importance and popularity 

of the complex SCN model. 

Conclusions 

The behavioral and physiological analyses highlighted in this 

review indicate that the central pacemaker is composed of a 

population of self-sufficient clocks that couple together to form a 

plastic network. The next step is to advance our understanding of the 

coupling mechanisms that govern pacemaker function and the circuitry 
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that supports this complex. This review presents models of SCN 

coupling that can be subjected to empirical tests. In particular, these 

coupling models posit that SCN neurons assume specific relationships 

through inherent differences in τ and/or φEM-dependent interactions. 

While previous experimental work has focused largely on putative 

coupling that synchronizes SCN neurons, the forms of circadian 

plasticity highlighted in this review can be conceptualized as either 

attractive (Fig. 2D) or repulsive coupling mechanisms (Fig. 2C). 

Whether “attractive” and “repulsive” coupling processes reflect distinct 

signaling mechanisms remains to be determined through empirical 

study, but it is of interest that similar processes have been employed 

in mathematical models of coupled, nonlinear oscillators (Shinbrot and 

Scarbrough, 1999). It will be important to gain a better understanding 

of the source and temporal patterning of coupling signals such as 

these, which can be tested effectively by synthesizing formal, 

physiological, and molecular analyses. 
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