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Dynamical density functional theory and its application
to spinodal decomposition

A. J. Archera) and R. Evans
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

~Received 5 May 2004; accepted 9 June 2004!

We present an alternative derivation of the dynamical density functional theory for the one-body
density profile of a classical fluid developed by Marconi and Tarazona@J. Chem. Phys.110, 8032
~1999!#. Our derivation elucidates further some of the physical assumptions inherent in the theory
and shows that it is not restricted to fluids composed of particles interacting solely via pair
potentials; rather it applies to general, multibody interactions. The starting point for our derivation
is the Smoluchowski equation and the theory is therefore one for Brownian particles and as such is
applicable to colloidal fluids. In the second part of this paper we use the dynamical density
functional theory to derive a theory for spinodal decomposition that is applicable at both early and
intermediate times. For early stages of spinodal decomposition our nonlinear theory is equivalent to
the ~generalized! linear Cahn–Hilliard theory, but for later times it incorporates coupling between
different Fourier components of the density fluctuations~modes! and therefore goes beyond Cahn–
Hilliard theory. We describe the results of calculations for a model~Yukawa! fluid which show that
the coupling leads to the growth of a second maximum in the density fluctuations, at a wave number
larger than that of the main peak. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1778374#

I. INTRODUCTION

Classical density functional theory~DFT!1 is a remark-
ably successful theory for describing the rich behavior of the
equilibrium structure and thermodynamics of fluids in exter-
nal potentials. DFT has been used to describe a wide variety
of fluid interfacial, confinement and even freezing phenom-
ena; for example, DFT has been a vital tool in understanding
the wetting behavior and surface phase transitions of fluids
adsorbed on various substrates.1,2 Given the success of DFT
for describing static inhomogeneous fluids, it is of great in-
terest to be able to build upon and incorporate these theories
into a theory for thedynamicsof inhomogeneous fluids.

There have been several approaches to obtaining an
equation of motion for the one-body density profiler(r ,t) of
a classical fluid. The form that these theories takes depends
somewhat on how the particular authors definer(r ,t). For
some,r(r ,t) is an ‘‘ensemble’’ average over the possible
configurations of the system at timet, given an ensemble of
starting configurations at an earlier timet50. Using this
definition forr(r ,t), there is clearly a unique density profile
r(r ,t) at a given timet, and therefore the equation govern-
ing the dynamics of this density profile will be deterministic.
This is the philosophy behind the approach of Marconi and
Tarazona~MT! in Refs. 3 and 4. Their approach obtains
more formally some of the results proposed by earlier au-
thors, such as Evans5 and Dieterichet al.,6 where it is as-
sumed from the outset that the gradient of the chemical po-
tential¹m(r ,t) is the thermodynamic force driving a particle
current

j ~r ,t !52Gr~r ,t !¹m~r ,t !, ~1!

whereG is a mobility constant. An expression form is ob-
tained within DFT by assuming that, as in the case of the
equilibrium fluid, the chemical potential is given by the func-
tional derivative of the Helmholtz free energy functional
with respect to the density profile.5,6 This assumption, to-
gether with Eq.~1! and the continuity equation

]r~r ,t !

]t
52¹• j ~r ,t !, ~2!

provide a basis for the deterministic formulation of dynami-
cal DFT~DDFT!. Equations of this form have been used, for
example, to study the dynamics of freezing7 and of
solvation.8 More recently, the more systematic approach of
MT has been used with much success to describe the dynam-
ics for several different systems. These applications refer to
particles in various external, time-dependent, potentials.9–12

For the systems considered, the agreement between theory
and the results from Brownian dynamics simulations have
generally been very good.

An alternative approach to obtaining a DDFT is to view
the fluid one-body density profile@denotedr̄(r ,t) in order to
distinguish it fromr(r ,t), the ‘‘ensemble’’ averaged density
profile# as some sort of spatial and/or time coarse grained
average of the density operatorr̂(r ,t)5( i 51

N d(r2r i(t)),
where ther i(t) are the positions of theN particles in the
system. In this case, for Brownian particles, the equation
governing the dynamics ofr̄(r ,t) will, of course, still con-
tain a stochastic element. This is the viewpoint of a number
of theories.13–18 There is some confusion in the literature19

~see also Ref. 20! as to what precisely is meant byr(r ,t).
We will attempt to clarify these issues elsewhere.21a!Electronic mail: andrew.archer@bristol.ac.uk
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In this paper we adopt the deterministic viewpoint of MT
and considerr(r ,t) to be an ensemble average, i.e., an aver-
age over all realizations of the stochastic noise in the preced-
ing interval, until time t. We employ the Smoluchowski
equation as the starting point for an alternative derivation of
the DDFT for classical fluids developed by MT in Refs. 3
and 4. The present scheme for deriving the DDFT bears
some similarity in spirit to that given recently in Ref. 22,
where projector–operator techniques are used to obtain first
the Smoluchowski equation and subsequently an equation of
motion for the fluid one-body density profile—the DDFT.
Before proceeding with our derivation of the DDFT, in Sec.
II we give a brief introduction to the Smoluchowski equa-
tion, expounding some of the physical assumptions concern-
ing the dynamics of the fluid that are implicit in this equa-
tion. In Sec. III we proceed with the derivation of the DDFT
of MT from the Smoluchowski equation. Section IV de-
scribes an important application of the DDFT to analyze the
short- and intermediate-time dynamics of spinodal decompo-
sition relevant to colloidal fluids. Finally, in Sec. V we make
some concluding remarks.

II. THE SMOLUCHOWSKI EQUATION

The Smoluchowski equation23–27 is a Fokker–Planck
equation~or generalized diffusion equation! for interacting
Brownian particles. A physically intuitive way of arriving at
this equation, e.g., Ref. 24, proceeds as follows: For a fluid
of N Brownian particles, one imagines applying a hypotheti-
cal force on the particles, where the force on thej th particle
is Fj52¹jC(rN) (rN[$r1 ,r2¯rN% is the set of position
coordinates for theN particles!. The equilibrium probability
density function in this situation will be

P~rN!5
1

Z
exp@2bC~rN!2bU~rN!#, ~3!

whereZ is a normalization factor,b51/kBT is the inverse
temperature, andU(rN) is the potential energy due to the
interparticle interactions and any other external potentials.
Taking the gradient of Eq.~3! we obtain

Fj5¹jU~rN!1kBT
¹j P~rN!

P~rN!
. ~4!

If Fj is switched off, there will be a force2Fj driving the
diffusion of particle j . We now assume that for time scales
@tB , the Brownian time scale, the velocity of thei th par-
ticle is

vi52(
j 51

N

Gi j •Fj ~5!

where Gi j 5bDi j (r
N) is the mobility tensor andDi j is the

diffusion tensor. We also assume that we can use the expres-
sion in Eq.~4! for the forceFj in ~5!, with the equilibrium
probability density functionP(rN) replaced by the nonequi-
librium probability density functionP(rN,t) and U(rN) re-
placed by U(rN,t) ~i.e., there may be a one-body time-
dependent external potential!. It is implicitly assumed that as
the particles interact, the momentum degrees of freedom
equilibrate much faster than the positional degrees of free-

dom, and we have effectively averaged over the momentum
degrees of freedom, while keeping the particle coordinates
fixed. For a colloidal fluid, this thermal equilibration should
occur via the solvent, and this approximation should be a
good one to make. For atomic fluids, this may not be the
case, especially for particles interacting via harshly repulsive
~hard-sphere-like! potentials. For fluids interacting with
softer potentials, such as in the Gaussian core model,9 this
might be a reasonable approximation to make, particularly
when the fluid is at high densities where each particle inter-
acts with a large number of neighbors and so the momentum
degrees of freedom can equilibrate faster. Since the particle
number is conserved, we can expect the fluid to obey the
continuity equation

]P~rN,t !

]t
52(

i 51

N

¹i .@vi P~rN,t !#. ~6!

Substituting Eqs.~4! and ~5! into ~6!, one finds

]P~rN,t !

]t
5(

i 51

N

(
j 51

N

¹i .Gi j .@kBT¹j1¹jU~rN,t !#P~rN,t !.

~7!

If the potential energy termU(rN,t)50, then Gi j 5Gd i j

5bDd i j , whereD is the diffusion coefficient and Eq.~7!
reduces to the diffusion equation, (]/]t)P(rN,t)
5bG( i¹ i

2P(rN,t). For a system of interacting particles the
diffusion tensor does not, in general, take such a simple
form.24,28 However, if we neglect the hydrodynamic interac-
tions, we can replaceGi j by its mean-field value,Gd i j , and
then Eq. ~7! reduces to a generalized diffusion equation,
termed the Smoluchowski equation,

]P~rN,t !

]t
5G(

i 51

N

¹i @kBT¹i1¹iU~rN,t !#P~rN,t !. ~8!

More formally, the Smoluchowski equation is the Fokker–
Planck equation for a system ofN Brownian particles in the
large friction limit.23,26,27The Langevin equation for a sys-
tem of N Brownian particles of massm is

m
d2r i~ t !

dt2 1G21
dr i~ t !

dt
52¹iU~rN,t !1X i~ t !, ~9!

whereX i(t)5(j i
x(t),j i

y(t),j i
z(t)) is a white noise term with

the propertŷ j i
a(t)&50 and^j i

a(t)j i
n(t8)&52kBTd i j d

and(t
2t8). When the friction constantG21 is large, we may ne-
glect the second derivative with respect to time in Eq.~9!,
and we obtain the stochastic equation of motion,3,4

dr i~ t !

dt
52G¹iU~rN,t !1GX i~ t !. ~10!

The ~generalized! Fokker–Planck equation for the distribu-
tion function P(rN,t) corresponding to this Langevin equa-
tion is Eq.~8!.23,26,27

III. DYNAMICS OF THE ONE-BODY DENSITY PROFILE

In this section we derive an equation for the time evolu-
tion of the one-body density profile,r(r ,t), from the Smolu-
chowski equation, Eq.~8!. For a similar approach based
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solely on pair potentials see Refs. 24, 29, and 30. The one-
body density is merely the integral of the probability distri-
bution function,

r~r1 ,t !5NE dr2¯E drN P~rN,t !. ~11!

Similarly, the two-body density is

r (2)~r1 ,r2 ,t !5N~N21!E dr3¯E drN P~rN,t !, ~12!

and in general then-particle density is

r (n)~rn,t !5
N!

~N2n!! E drn11¯E drN P~rN,t !. ~13!

Using Eqs.~11!–~13!, and assuming that the potential energy
function can be expressed in terms of a one-body external
potential acting on each particle,Vext(r i ,t), and that the par-
ticle interactions are a sum of pair potentials,v2(r i ,r j ),
three-body potentialsv3(r i ,r j ,r k), and higher body interac-
tions,

U~rN,t !5(
i 51

N

Vext~r i ,t !1
1

2 (
j Þ i

(
i 51

N

v2~r i ,r j !

1
1

6 (
kÞ j Þ i

(
j Þ i

(
i 51

N

v3~r i ,r j ,r k!1¯ ~14!

then we find that on integrating Eq.~8!, one obtains

G21
]r~r1 ,t !

]t
5kBT¹1

2r~r1 ,t !1¹1 @r~r1 ,t !¹1Vext~r1 ,t !#

1¹1E dr2 r (2)~r1 ,r2 ,t !¹1v2~r1 ,r2!

1¹1 .E dr2E dr3 r (3)~r1 ,r2 ,r3 ,t !

3¹1v3~r1 ,r2 ,r3!1¯ . ~15!

We note that if]r(r ,t)/]t50, then Eq.~15! is equivalent to
the derivative of the first equation of the YBG hierarchy.31

For a fluid in equilibrium, there is an exact sum rule5

which relates the gradient of the one-body direct correlation
function to the interparticle forces acting on a particle@recall
that 2kBTc(1)(r ) is the effective one-body potential due to
interactions in the fluid#. If the particles interact solely
via pair potentials: 2kBTr(r )¹c(1)(r )5*dr 8 r (2)(r ,r 8)
3¹v2(r ,r 8). This result can be generalized straightfor-
wardly to fluids where the particles interact via many-body
potentials, Eq.~14!, giving

2kBTr~r1!¹c(1)~r1!

5E dr2 r (2)~r1 ,r2!¹v2~r1 ,r2!

1E dr2E dr3 r (3)~r1 ,r2 ,r3!¹1v3~r1 ,r2 ,r3!1¯

5 (
n52

` E dr2¯E drn r (n)~rn!¹1vn~rn!. ~16!

From equilibrium statistical mechanics one also knows that
c(1)(r ) is equal to the functional derivative of the excess
~over ideal! part of the Helmholtz free energy functional,5

c(1)~r !52b
dFex@r~r !#

dr~r !
, ~17!

evaluated at the equilibrium density.@Generallyc(1)(r ) is a
functional of r~r !.# Making the approximation that these
identities, Eqs.~16! and~17!, valid for the equilibrium fluid,
hold also for the nonequilibrium fluid and substituting into
Eq. ~15!, we obtain the DDFT equation, stated without jus-
tification by Evans@see Eqs.~166! and~167! of Ref. 5#, and
derived much more convincingly, for the case of fluids inter-
acting solely via pair potentials, by MT,3,4 i.e.,

G21
]r~r ,t !

]t
5¹Fr~r ,t !¹

dF@r~r ,t !#

dr~r ,t ! G , ~18!

whereF@r(r ,t)# is the Helmholtz free energy functional,

F@r~r ,t !#5kBTE dr r~r ,t !@ ln~r~r ,t !L3!21#

1Fex@r~r ,t !#1E dr Vext~r ,t !r~r ,t !. ~19!

The first term is the ideal gas free energy;L is the de Broglie
wavelength. In obtaining Eq.~18! by using Eqs.~16! and
~17!, which are strictly equilibrium results, we are effectively
assuming that the correlations between the particles when the
fluid is out of equilibrium are equivalent to those for an
equilibrium fluid with the same one-body density profile
r(r ,t).

We can obtain further insight into the status of Eq.~18!
by rewriting it as follows:

G21
]r~r ,t !

]t
5¹@r~r ,t !¹m~r ,t !#, ~20!

where2¹m(r ,t)[2¹(dF@r#/dr) is the net driving force
acting on a particle located at (r ,t). The chemical potential
obtained from Eq.~19! has three contributions,

dF@r~r ,t !#

dr~r ,t !
[m~r ,t !5m id~r ,t !1m int~r ,t !1mext~r ,t !.

~21!

The first contribution is the ideal gas entropic termm id(r ,t)
5kBT ln L3r(r ,t), the second contribution, m int(r ,t)
52kBTc(1)(r ), is that due to the interactions with the other
particles in the fluid, and the final term is simply the external
potential,mext(r ,t)5Vext(r ,t). As noted by MT,3 for nonin-
teracting particles,m int[0, and Eq.~20! reduces to the exact
equation for the diffusion of an ideal Brownian gas, i.e.,

G21
]r~r ,t !

]t
5kBT¹2r~r ,t !1¹@r~r ,t !¹Vext~r ,t !#.

~22!

For an inhomogeneous interacting fluid in equilibrium the
density profile satisfies5

dF@r~r !#

dr~r !
5m5constant, ~23!
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where the Helmholtz free energy functionalF@r# is given by
Eq. ~19! with r(r ,t) replaced byr~r ! andVext(r ,t) replaced
by Vext(r ), so there is no net driving force on the particles. It
follows that for a time-independent external potential,
Vext(r ,t)→Vext(r ), as t→`, regardless of the initial profile
r(r ,t50), Eq. ~18! will yield the same one-body density
profile in the limit t→` as does the equilibrium DFT@i.e.,
the solution to Eq.~23!# for the same external potential. The
present derivation provides, we believe, additional insight to
that of MT3,4 into the physics incorporated into Eq.~18! ~the
key DDFT equation!. Assuming one has an accurate expres-
sion for the Helmholtz free energy functional Eq.~19!, and in
particular for the excess Helmholtz free energy functional,
Eq. ~18! should provide an accurate description of the dy-
namics ofr(r ,t) for a system of Brownian particles.

IV. SPINODAL DECOMPOSITION
FROM THE DDFT EQUATION

In this section we apply the DDFT derived in the pre-
ceding section to fluid spinodal decomposition. Since the ba-
sis for the DDFT is the Smoluchowski equation, an equation
of motion for Brownian particles, we expect our theory to be
particularly relevant to spinodal decomposition in colloidal
fluids, rather than molecular fluids. In colloidal fluids friction
with the solvent results in a much faster equilibration of the
momentum degrees of freedom compared with those of the
particle positions. However, since we do not explicitly in-
clude the particles of the solvent in which the colloids are
suspended, our theory neglects the hydrodynamic interac-
tions that may be significant to spinodal decomposition in
some colloidal fluids.

When a~colloidal! fluid which exhibits liquid–gas phase
separation~or more generally fluid–fluid phase separation! is
quenched to a state point in the region of the phase diagram
where there is coexistence, the fluid can phase separate in
two distinct ways. The first mechanism is that which occurs
when the state point to which the fluid is quenched is near to
the binodal. In this case phase separation generally occurs
via nucleationof droplets of one phase forming in the other
phase.32,33 For example, if the fluid is quenched to a state
point inside the binodal on the liquid side, then bubbles of
the gas phase can nucleate in the bulk of the metastable
liquid.

However, if the fluid is quenched to a state point well
inside the binodal, then a different mechanism for phase
separation is possible: spinodal decomposition. Spinodal de-
composition is characterized by the exponential growth of
density fluctuations of certain wavelengths.32,33 In ~mean-
field! theoretical descriptions, liquid–gas phase separation is
determined by the occurrence of a van der Waals loop in the
Helmholtz free energy per particle,f (v), where v is the
volume per particle. Spinodal decomposition is predicted to
occur in regions of the phase diagram where (]2f /]v2)T

,0, i.e., regions where the isothermal compressibilityxT is
predicted to be negative. The boundary to this region, the
spinodal, is defined by the locus of (]2f /]v2)T50 in the
phase diagram. Experimentally there is not necessarily a
sharp distinction between regions where phase separation oc-
curs via nucleation and via spinodal decomposition. How-

ever, in a deep quench far from the spinodal, spinodal de-
composition is the mechanism generally expected for phase
separation.

In a fluid undergoing spinodal decomposition three dif-
ferent regimes can be distinguished. For early times after the
quench, the amplitude of the density fluctuations are small
and theories linear in the density fluctuations such as the
well-known Cahn–Hilliard theory34,35 ~see also Refs. 29, 32,
33, 36, and 37! provide a good description of this~early!
stage of spinodal decomposition. At intermediate times the
density fluctuations can be large, but sharp interfaces be-
tween domains of gaslike and liquidlike regions have still not
formed.29 At later stages there are sharp interfaces between
domains of liquid and gas and successful theoretical descrip-
tions of the later stage dynamics of spinodal decomposition,
such as the Allen–Cahn theory38 ~see also Refs. 32, 33, and
39!, focus on the dynamics of the interfaces.

First, in Sec. IV A, we shall use the DDFT formalism to
derive a generalization of the~linear! Cahn–Hilliard
theory,34,35 similar to that described in Refs. 29, 36, and 37,
for the early stages of spinodal decomposition, when the
density fluctuations are small. Then in Sec. IV B we will
proceed to derive a nonlinear theory which we believe may
be applicable for the dynamics of spinodal decomposition at
both short and intermediate time scales. Results of explicit
calculations for a model fluid are given in Sec. IV C.

A. Early stages of spinodal decomposition

We consider spinodal decomposition in the bulk of a
fluid, so we setVext(r ,t)50 in Eqs.~18! and ~19! and con-
sider small density fluctuationsr̃(r ,t)5r(r ,t)2rb about the
bulk fluid density,rb , i.e., we are considering a homoge-
neous fluid which has been rapidly quenched to the region of
the phase diagram inside the spinodal~e.g., fromA to B in
Fig. 1! and we seek those wave numbersk for which density
fluctuations grow. From Eqs.~17!, ~18!, and~19! we obtain

FIG. 1. Phase diagram for a fluid composed of particles interacting via pair
potentials of the form in Eqs.~38!–~40!, calculated from the free energy of
Eq. ~41!. h5prbs3/6 is the packing fraction andkBTs3/a is the~reduced!
temperature. The path fromA to B denotes the quench corresponding to the
results in Figs. 2 and 3.

4249J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Dynamical density functional theory and spinodal decomposition

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

158.125.80.91 On: Fri, 03 Oct 2014 09:59:29



~GkBT!21
]r̃~r ,t !

]t
5¹2r̃~r ,t !2rb¹2c(1)~r ,t !

2¹@r̃~r ,t !¹c(1)~r ,t !#. ~24!

This approach is basically that of Refs. 5 and 36. In Ref. 5
Evans writes down Eq.~18!, and then linearizes Eq.~24! in r̃
by Taylor expandingc(1) about the bulk fluid value, giving

c(1)~r !5c(1)~`!1E dr 8
dc(1)~r !

dr~r 8!
U

rb

r̃~r 8,t !1O~ r̃2!,

~25!

where c(1)(`)[c(1)@rb#52bmex and mex is the excess
chemical potential. The second term simplifies by recalling5

dc(1)~r !

dr~r 8!
52b

d2Fex@r#

dr~r 8!dr~r !

5c(2)~r ,r 8!5c(2)~ ur2r 8u;rb!, ~26!

for a homogeneous fluid of spherically symmetric particles.
For an equilibrium systemc(2)(r ;rb) is the Ornstein–
Zernike pair direct correlation function of the fluid of density
rb . Substituting Eq.~25! into Eq. ~24!, keeping only terms
that are linear in the fluctuationr̃, we obtain.5,36

~GkBT!21
]r̃~r ,t !

]t

5¹2r̃~r ,t !2rb¹2F E dr 8 c(2)~ ur2r 8u;rb!r̃~r 8,t !G .
~27!

Fourier transforming yields an equation for the time evolu-
tion of the different Fourier components

r̂~k,t !5E dr exp~ ik"r !r̃~r ,t !, ~28!

and one obtains

~GkBT!21
]r̂~k,t !

]t
52k2r̂~k,t !1rbk2ĉ~k!r̂~k,t !, ~29!

where ĉ(k)5*dr exp(ik"r )c(2)(r ;rb). The solution of Eq.
~29! is

r̂~k,t !5 r̂~k,0!exp@R~k!t#, ~30!

where R(k)52GkBTk2(12rbĉ(k)). For an equilibrium
fluid, at a state point outside the spinodal,S(k)[(1
2rbĉ(k))21 is the usual static structure factor31,40and, since
for an equilibrium fluidS(k).0 for all values ofk, it fol-
lows that outside the spinodalR(k),0 for all values ofk.
From Eq.~30!, all Fourier components will decay implying,
of course, that the fluid is stable.

On approaching the spinodal from the single phase re-
gion one finds thatS(k50)→`; at the spinodal (1
2rbĉ(k50))50. Within the mean-field~van der Waals-
type! theory of fluids to be described below, we find that
inside the spinodalS(k) can take negative values40 and thus
the quantityR(k) can have positive values fork,kc , where
the value ofkc depends upon how far into the spinodal re-
gion one has quenched, see for example, Fig. 2, which em-

ploys a particular approximation, namely Eq.~43!, for ĉ(k).
kc is obtained as the solution to the equationrbĉ(kc)51.
Thus we find that inside the spinodal region there will be
some density fluctuations with a wave numberk,kc whose
amplitude will grow exponentially.5,29,30,34–37The deeper the
quench into the spinodal region, the larger the value ofkc

can be.
This general picture of the exponential growth of certain

Fourier components~modes! was obtained originally by
Cahn and Hilliard34,35who derived an explicit approximation
for the functionR(k). Cahn–Hilliard theory for spinodal de-
composition is usually derived by considering the continuity
equation~2!, together with the following approximation for
the current:

j ~r ,t !52M¹
dF@r~r ,t !#

dr~r ,t !
, ~31!

whereM is a mobility constant and the functionalF is cho-
sen to be of thef4 Ginzburg–Landau form. Generalizing
slightly we assume that the free energy functional has the
square-gradient form5

Fsg@r~r ,t !#5E dr F f 0~r~r ,t !!1
1

2
Ku¹r~r ,t !u2G , ~32!

wheref 0(r)[r f (r) is the Helmholtz free energy density for
the homogeneous fluid of densityr and we treatK as a
positive constant. From Eq.~2! one then finds

]r~r ,t !

]t
5M¹2F] f 0~r~r ,t !!

]r~r ,t !
2K¹2r~r ,t !G . ~33!

This equation is then linearized about the bulk densityrb to
obtain32,36

FIG. 2. The functionS(k)[(12rbĉ(k))21 calculated using Eq.~43! at the
state point~inside the spinodal! with h50.2 andkBTs3/a50.05, pointB in
Fig. 1. Note that fork,kc , wherekcs.0.8, S(k),0. In the inset we plot
R(k)s2b/G52k2s2/S(k), the factor appearing in the exponential in Eq.
~30!. In the initial stages of spinodal decomposition density fluctuations with
wave numbersk,kc grow exponentially, whereas fork.kc the fluctuations
are damped.
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]r̃~r ,t !

]t
5M¹2F S ]2f 0

]r2 D
rb

2K¹2G r̃~r ,t !. ~34!

On Fourier transforming Eq.~34! one obtains]r̂(k,t)/]t
5Rsg(k) r̂(k,t), where Rsg(k)52Mk2(Kk21(]2f 0 /
]r2)rb

), the solution to which is Eq.~30!, with R(k) re-
placed byRsg(k). Note that (]2f 0 /]r2)rb

is negative inside
the spinodal. It is clear from this argument that Cahn–
Hilliard theory can therefore be viewed as a special case of
the more general linear theory presented in the earlier part of
this section.41 By employing a free energy functional more
accurate than~32! one should be able to incorporate short
wavelength density fluctuations as well as the long wave-
length,k→0, fluctuations accounted for by a square-gradient
approach.

B. Spinodal decomposition at intermediate times

In order to go one step beyond the lowest order~linear!
theories described above, we consider an approximate excess
Helmholtz free energy functional, obtained by Taylor ex-
panding the excess Helmholtz free energy about the uniform
density. By integrating Eq.~25! and omitting terms beyond
O( r̃2) we obtain

Fex@r#5Fex@rb#1mexE dr r̃~r ,t !

2
kBT

2 E drE dr 8 r̃~r ,t !r̃~r 8,t !c(2)~ ur2r 8u;rb!.

~35!

This truncated quadratic density expansion is often used in
the theory of inhomogeneous fluids in equilibrium.1 Using
Eq. ~35! in Eq. ~24! we find

~GkBT!21
]r̃~r ,t !

]t
5¹2r̃~r ,t !2¹F ~rb1 r̃~r ,t !!

3E dr 8 r̃~r 8,t !¹c(2)~ ur2r 8u;rb!G .
~36!

The first two terms on the right-hand side are those entering
the linear theory~27! while the third term is the only nonlin-
ear one which arises for the functional~35!. Fourier trans-
forming Eq.~36! we obtain

~GkBT!21
]r̂~k,t !

]t

52k2r̂~k,t !1rbk2ĉ~k!r̂~k,t !

1
1

~2p!3 E dk8 k"k8r̂~k8,t !ĉ~k8!r̂~ uk2k8u,t !, ~37!

which should be compared with Eq.~29!; now there is an
additional term on the right-hand side is nonlinear inr̂(k,t).
This term describes the coupling between the different Fou-
rier components of the density fluctuations~modes!.42 An
equation almost equivalent to Eq.~37! was derived recently
by considering the mobilityM to be a linear function of the

order parameter, rather than a constant, in a Cahn–Hilliard
treatment—see Eq.~10! in Ref. 43; we shall discuss this
further in Sec. IV D. In order to proceed further we must
assume a particular form for the Helmholtz free energy func-
tional, from which we can obtainĉ(k) and thus solve Eq.
~37! numerically.

C. Results for a model fluid

We consider a fluid composed of particles interacting via
pair potentials of the form

v2~r !5vhs~r !1vat~r !, ~38!

where

vhs~r !5H `, r<s

0, r .s
~39!

is the hard-sphere pair potential, and the attractive part of the
pair potential has a Yukawa form

vat~r !52
al3 exp~2lr !

4plr
, ~40!

where a and l are positive constants. Provided the decay
length l21 is sufficiently large this model fluid exhibits
stable, with respect to freezing, liquid–gas phase separation.
Pair potentials of this form are often used as crude models
for simple fluids but they could be used to model the effec-
tive ~depletion! potential between the colloids in a colloid–
polymer mixture solution44 by choosing the pair potential
parameters in Eqs.~39! and ~40! to mimic the well-known
Asakura–Oosawa potential.44–47 In calculations for our
model system we approximate the excess Helmholtz free en-
ergy functional by

Fex@r#5Fex
hs@r#1

1

2 E drE dr 8 r~r ,t !r~r 8,t !vat~ ur2r 8u!,

~41!

whereFex
hs@r# is the reference hard-sphere Helmholtz excess

free energy functional and attractive interactions are treated
in a mean-field fashion.1 If we employ the Rosenfeld Funda-
mental Measure Theory48–50 for Fex

hs@r#, this nonlocal func-
tional generates the Percus–Yevick pair direct correlations
functions in a hard-sphere fluid. Thus, using Eq.~26! we
obtain the following simple~random phase! approximation

c(2)~r ;rb!5cPY~r ;rb!2bvat~r !, ~42!

wherecPY(r ) is the Percus–Yevick~PY! approximation31 for
the hard-sphere pair direct correlation function. With this
choice the Fourier transform ofc(2)(r ) can be carried out
analytically

ĉ~k!5 ĉPY~k!1
bal2

l21k2 , ~43!

whereĉPY(k) is given by51
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ĉPY~k!524ps3F S a12b14g

q3 2
24g

q5 D sin~q!

1S 2
a1b1g

q2 1
2b112g

q4 2
24g

q6 D cos~q!

1S 24g

q6 2
2b

q4 D G , ~44!

whereq5ks, and the coefficients

a5
~112h!2

~12h!4 ,

b5
26h~11h/2!2

~12h!4 , ~45!

g5
h~112h!2

2~12h!4

depend uponh5prbs3/6, the packing fraction. The phase
diagram for our model fluid is displayed in Fig. 1. The
liquid–gas binodal is calculated by performing the common
tangent construction on the Helmholtz free energy per par-
ticle for the bulk fluid, f (rb)5 f PY(rb)2rba/2, obtained
from Eq.~41!; f PY(rb) is the PY compressibility approxima-
tion for the hard-sphere Helmholtz free energy.31 The spin-
odal is the locus of points for which]2f /]v250, wherev
51/rb . For simplicity we choose to set the inverse length
scale parameter in the attractive part of the pair potential
equal to the hard-sphere diameter, i.e.,l215s. The quantity
a5*dr vat(r ) determines the energy scale. We expect the
present model fluid to exhibit a freezing transition for large
h, but we do not consider this here.

We are now in a position to use our approximate form
for ĉ(k), obtained from Eqs.~43! and~44!, together with Eq.
~37!, to calculater̂(k,t) during the early and intermediate
times of spinodal decomposition. Weassumethat at t50
r̂(k,t) takes a small, constant, positive value for all values of
k and chooser̂(k,t50)51028. The later time dynamics are
insensitive to the specific choice of value forr̂(k,t50) be-
cause for short times, when Eq.~30! describes the dynamics
of spinodal decomposition, Fourier components~modes!
with wave numberk.kc do not grow and are exponentially
damped, whereas components withk,kc grow exponen-
tially with the initial value r̂(k,t50) as a prefactor. Thus
choosing a different value forr̂(k,t50) is effectively a shift
of the time axis. For a quench to the state pointkBTs3/a
50.05 andh50.2 ~i.e., the quench to pointB, in Fig. 1! the
early time growth gives a single peak inr̂(k,t) at ks.0.6
corresponding to where the maximum ofR(k) in Eq. ~30!
occurs—see the inset to Fig. 2. We find thatR(k) obtained
using Eqs.~43! and ~44! for ĉ(k) has a similar form to that
extracted from molecular dynamics simulation results for a
Lennard-Jones fluid deep inside the spinodal region.52 More-
over, the overall shape ofR(k) and the values ofkcs are in
keeping with results for the Lennard-Jones fluid~for similar
state points! obtained by Evans and Telo Da Gama,36 using a
theory equivalent to the present, and by Abraham,37 using a
perturbation theory approach. We also plot in Fig. 2 the func-
tion S(k)[(12rbĉ(k))21; the negative portion of this

function corresponds to wave numbersk for which density
fluctuations grow exponentially in the early stages of spin-
odal decomposition.

Some typical plots ofr̂(k,t) at early times are displayed
in the inset to Fig. 3, for a quench to pointB in Fig. 1. The
plots are for the reduced timest* 5kBTGs2t545, 50, and
55 in the inset and 60, 65, 67, and 69 in the main figure. The
results obtained from the linear theory, Eq.~29!, and the
nonlinear theory, Eq.~37!, are indistinguishable for the three
earliest times~see inset!. However, at later times the linear
theory ~dashed line! continues to give just a single peak in
r̂(k,t) that grows exponentially, whereas the nonlinear
theory~solid line!, which includes the effect of coupling be-
tween Fourier components with different wave numbers,
shows that components with wave numbers different from
that predicted by the linear theory can also grow. We see that
the effect of the coupling incorporated into the nonlinear
theory becomes increasingly significant at intermediate
times, producing first a shoulder which grows into a bump in
r̂(k,t) at a larger wave number,ks.0.8 than that of the
main peak which first appears inr̂(k,t) at early times.

D. Discussion

In simulation studies of spinodal decomposition the
quantity that is often measured in order to characterize the
fluid is the structure factor

S~k,t !5
1

N (
i , j 51

N

^exp~ ik@r i~ t !2r j~ t !# !&, ~46!

where^¯& is an ensemble average over different realizations
of the stochastic noise in the interval up to timet. For small
values ofk one finds that29

FIG. 3. Plot of r̂(k,t) for a quench to the state pointkBTs3/a50.05 and
h50.2, point B in Fig. 1. r̂(k,t) is shown for timest* 5kBTGs2t
545,50,55 ~in the inset! and t* 560,65,67,69~in the main figure!. The
results obtained from the linear theory@Eq. ~29!# are denoted by a dashed
line, and those from the nonlinear theory@Eq. ~37!# by a solid line. The
effect of the coupling between Fourier components~modes! with different
wave numbers, described by the nonlinear theory, becomes increasingly
significant at later times, whereas for earlier times~see inset!, the results
from the two theories are indistinguishable.
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S~k,t !.A~ t !1
1

N
@ r̂~k,t !#2, ~47!

whereA(t) is a ~small! wave number independent baseline.
Thus, to a reasonable approximationS(k,t)}@r̂(k,t)#2 for
small values ofk ~see Refs. 29 and 36!. Simulation studies of
the early stages of spinodal decomposition in model colloidal
fluids such as that in Ref. 53, where the authors consider a
fluid composed of particles interacting via the Lennard-Jones
pair potential, display the growth of a single peak inS(k,t).
This is, of course, a general feature of the very early stages
of spinodal decomposition and is found in many other
systems.29,32 Thus, our results for short times showing the
growth of a single peak inr̂(k,t), and therefore also in
S(k,t), are in keeping with simulation studies.

The development of a second peak~shoulder! in S(k,t)
at intermediate times after the quench, at a larger value ofk
was observed in the two-dimensional calculations of Mao
et al.,43 where they considered a nonlinear extension of
Cahn–Hilliard theory for polymer mixtures. The order pa-
rameter for their theory is the deviation of the concentration
c(r ,t)5C(r ,t)2C0 @i.e., c(r ,t) replaces r̃(r ,t) in our
theory#. They used the approximation that the mobilityM
5M01M1c(r ,t), i.e., a linear function ofc(r ,t), together
with a square-gradient Helmholtz free energy functional in
Eq. ~31!. By linearizing dF/dC about the average concen-
tration C0 in the manner leading to Eq.~34! along with the
continuity equation~2!, Mao et al.43 obtain a nonlinear
theory that is very similar in structure to that which we ob-
tain using Eq.~1! with a constant mobility together with the
truncated functional~35!. The main difference between the
two approaches, other than the choice of approximation for
the Helmholtz free energy functional,54 is that Maoet al.43

have an adjustable parameter, the ratioM1 /M0 , that allows
a tuning of the mobility for their polymer blend, whereas in
our approach we are effectively restricted to the choice
M1 /M051/rb . Their results also show that the second peak
~shoulder! in S(k,t) results from considering a theory that is
nonlinear~second order! in the order parameter. The other
significant difference from Ref. 43 is that the present theory
uses a microscopic nonlocal functional~35!, and therefore
includes the effects of interparticle correlations more accu-
rately than a gradient~Ginzburg–Landau! theory such as that
used by Maoet al.43 Nevertheless, in the early and interme-
diate times of spinodal decomposition, where sharp inter-
faces between gaslike and liquidlike domains have not yet
formed, we should expect good qualitative agreement be-
tween our results and those from the nonlinear Cahn–
Hilliard gradient theory of Maoet al.43 Mao et al.also found
that the presence of the nonlinear terms in their theory re-
sulted in a significant change in the connectivity of contour
plots of the order parameter from that found in the absence
of these terms (M150)—see Figs. 3 and 5 of Ref. 43. On
the basis of our present analysis we would expect this obser-
vation to be a general feature of spinodal decomposition at
intermediate time scales.

V. CONCLUDING REMARKS

This paper falls broadly into two parts. In the first part
we provided an alternative derivation of the DDFT devel-
oped by MT.3,4 Our derivation elucidates the physical ap-
proximations made in order to construct the theory. The start-
ing point is the Smoluchowski equation~8!, the~generalized!
Fokker–Planck equation for the probability distribution
function P(rN,t) corresponding to the Langevin equation of
motion, Eq.~10!. This stochastic basis for the theory means
that the theory should be applicable to colloidal fluids where
because of interactions with the solvent particles the momen-
tum degrees of freedom of the colloids equilibrate much
faster than the positional degrees of freedom. In atomic flu-
ids the equilibration time scale for the momentum degrees of
freedom can be of the same order as that for the relaxation of
positional degrees of freedom and therefore the present
theory may break down for atomic fluids. However, because
the correct equilibrium limit is built into this theory, i.e.,
when]r(r ,t)/]t50 the theory is equivalent to Eq.~23!, it is
feasible that the present theory would give reasonable results
for atomic fluids, assuming that one also has a reliable ap-
proximation for the excess Helmholtz free energy functional,
Fex@r#. The fact that the correct equilibrium limit is built in
is, we believe, one of the most appealing features of the
theory.

The further approximation~beyond assuming that the
Smoluchowski equation holds! made in deriving the DDFT,
Eq. ~18!, is to assume Eqs.~16! and ~17!, exact equilibrium
results, are also valid for the nonequilibrium fluid. This ap-
proximation is equivalent to assuming that the two-particle,
three-particle, and higher order correlations in the nonequi-
librium fluid are equivalent to those in an equilibrium fluid
with the specified one-body density profile. We expect that
this approximation is a reasonable one to make and will not
result in significant failures of the theory, as long as other
approximations can be justified. We therefore believe that
Eq. ~18! may well provide a reliable account of the dynamics
for a variety of different fluids, provided of course, that one
has an accurate approximation for the appropriateFex@r#.

The second part of the present paper is concerned with
the application of the DDFT to the problem of spinodal de-
composition. Our key result is Eq.~37!. For early times after
quenching the fluid, when density fluctuations are small in
amplitude, our theory reduces to the linear theory of Evans
and Telo Da Gama.36 Furthermore, this linear theory reduces
to the Cahn–Hilliard theory if we were to use a square gra-
dient Helmholtz free energy functional Eq.~32! rather than
the more accurate nonlocal functional, Eq.~35!. Cahn–
Hilliard theory32–35 is known to provide a successful quali-
tative description of the early stages of spinodal decomposi-
tion. Since the present theory incorporates all the effects that
Cahn–Hilliard theory describes, and provides a more accu-
rate treatment of short wavelength correlations36 it should be
a reliable quantitative theory for the early stages of spinodal
decomposition.

However, the key feature of our theory is that it incor-
porates a ‘‘mode-coupling’’ term@final term on the right-
hand side of Eq.~37!# which describes the coupling between
different density fluctuation modes, an effect which becomes
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important in the intermediate stages of spinodal decomposi-
tion. The results of calculations including our ‘‘mode-
coupling’’ term are in qualitative agreement with those from
a recent nonlinear extension to Cahn–Hilliard theory.43 We
believe that further work needs to be done in testing the
predictions of our theory. In particular, a comparison with
Brownian dynamics simulation results for spinodal decom-
position would be very useful; we do not know of relevant
simulations which go beyond the very early stages of spin-
odal decomposition. Of course, running simulations that get
into the stage of spinodal decomposition for which our re-
sults exhibit deviations from those of the linear theory could
be computationally expensive.

We conclude by mentioning one important conceptual
issue regarding the input to our theory of spinodal decompo-
sition. Clearly Eqs.~29! or ~37! require ĉ(k) as input. As
emphasized earlier, for anequilibrium stateĉ(k) is simply
the Fourier transform of the pair direct correlation function
and, as such, it can be obtained from integral equation
theories31 or from simulations. In Ref. 36 results forĉ(k)
calculated using Percus–Yevick theory for a Lennard-Jones
fluid wereextrapolatedinto the unstable spinodal region.55,56

Such a procedure is fraught with uncertainty and is difficult
to justify. The present DFT formulation of the theory avoids
such problems.c(2) is definedas the second functional de-
rivative of 2bFex@r# and provided one makes a division of
Fex@r# into a repulsive reference contribution plus an attrac-
tive ~mean-field-like! contribution, as in Eq.~41!, there is no
difficulty in calculatingc(2)(r ;rb) inside the spinodal. We do
not need to make any extrapolation. One could envisage
treating attractive interactions in a more sophisticated
fashion1 than in Eq.~41! but provided the basic division is
maintained one should expect to obtain similar results for
ĉ(k).
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