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Dynamical density functional theory and its application
to spinodal decomposition

A. J. Archer® and R. Evans
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

(Received 5 May 2004; accepted 9 June 2004

We present an alternative derivation of the dynamical density functional theory for the one-body
density profile of a classical fluid developed by Marconi and Tarazdn&hem. Physl110, 8032
(1999]. Our derivation elucidates further some of the physical assumptions inherent in the theory
and shows that it is not restricted to fluids composed of particles interacting solely via pair
potentials; rather it applies to general, multibody interactions. The starting point for our derivation
is the Smoluchowski equation and the theory is therefore one for Brownian particles and as such is
applicable to colloidal fluids. In the second part of this paper we use the dynamical density
functional theory to derive a theory for spinodal decomposition that is applicable at both early and
intermediate times. For early stages of spinodal decomposition our nonlinear theory is equivalent to
the (generalizeg linear Cahn—Hlilliard theory, but for later times it incorporates coupling between
different Fourier components of the density fluctuatiomedes and therefore goes beyond Cahn—
Hilliard theory. We describe the results of calculations for a médekawa fluid which show that

the coupling leads to the growth of a second maximum in the density fluctuations, at a wave number
larger than that of the main peak. 8004 American Institute of Physics.

[DOI: 10.1063/1.1778374

I. INTRODUCTION j(r,y==Tp(r,t)Vu(r,t), D)

whereI" is a mobility constant. An expression fer is ob-
dained within DFT by assuming that, as in the case of the

equilibrium structure and thermodynamics of fluids in exter-eqUiIibrium fluid, the chemical potential is given by the func-

nal potentials. DFT has been used to describe a wide varietSé?naI derivative of the HEIth% fre_e energy f_unctional
of fluid interfacial, confinement and even freezing phenom- |ttf;] resp;ctEto( 1t)he ((jjetr;]sny prt(_)fl 't. This a;_ssumphon, to-
ena; for example, DFT has been a vital tool in understandinge erwi /1) and the continuity equation

the wetting behavior and surface phase transitions of fluids dp(r,t)
adsorbed on various substratésGiven the success of DFT ot

for describing static inhomogeneous fluids, it is of great in-

terest to be able to build upon and incorporate these theoridd0Vide a basis for the deterministic formulation of dynami-
into a theory for thedynamicsof inhomogeneous fluids. cal DFT (DDFT). Equations of this form have been used, for

There have been several approaches to obtaining a‘?‘?(?mtple’gl;[/? study ttk|1e tgynamics Oft fret;zﬁngmd OL f
equation of motion for the one-body density profilg ,t) of solvation. More recently, the more Systemalic approach o

a classical fluid. The form that these theories takes depentMT has been “S?d with much success to desprlb_e the dynam
. i ics for several different systems. These applications refer to
somewhat on how the particular authors defirfe,t). For : : ) . -
; . " . particles in various external, time-dependent, potentidfs.
some, p(r,t) is an “ensemble” average over the possible

. . X ; For the systems considered, the agreement between theory
configurations of the system at timggiven an ensemble of : . . .

. ) : N : . and the results from Brownian dynamics simulations have
starting configurations at an earlier time=0. Using this

definition for p(r,t), there is clearly a unique density profile generally been very good,

(r.1) at a given timet, and therefore the equation govern- An alternative approach to obtaining a DDFT is to view
PLs given timd, quation gov the fluid one-body density profilelenotedo(r,t) in order to

ing the dynam.ics of this depsity profile will be determini;tic. istinguish it fromp(r 1), the “ensemble” averaged density
E:Zzlzr:g(eMpTh)lI(i):olgrgsbesh:r? dthf aT%ng(:a;Sp?;;\:l;ﬁr?br:;;g(gmﬁIe] as some sort of spatial and/or time coarse grained
. . : A _ <N
more formally some of the results proposed by earlier auf;\verage of the density operatp(r,t) =2, 5(r ~ ri(t),
y prop y where ther,(t) are the positions of th&l particles in the

thors, such as Evahsind Dieterichet al,” where it is as- system. In this case, for Brownian particles, the equation

sumed from the outset that the gradient of the chemical pogoverning the dynamics qf(r,t) will, of course, still con-

tential vV .(r,t) is the thermodynamic force driving a particle (5in 5 stochastic element. This is the viewpoint of a number

Classical density functional theofpFT)! is a remark-
ably successful theory for describing the rich behavior of th

:_V'j(r!t)! (2)

current of theories'*~*8 There is some confusion in the literattite
(see also Ref. 20as to what precisely is meant kp(r,t).
dElectronic mail: andrew.archer@bristol.ac.uk We will attempt to clarify these issues elsewh€&re.
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In this paper we adopt the deterministic viewpoint of MT dom, and we have effectively averaged over the momentum
and considep(r,t) to be an ensemble average, i.e., an averdegrees of freedom, while keeping the particle coordinates
age over all realizations of the stochastic noise in the precedixed. For a colloidal fluid, this thermal equilibration should
ing interval, until timet. We employ the Smoluchowski occur via the solvent, and this approximation should be a
equation as the starting point for an alternative derivation ofyjood one to make. For atomic fluids, this may not be the
the DDFT for classical fluids developed by MT in Refs. 3 case, especially for particles interacting via harshly repulsive
and 4. The present scheme for deriving the DDFT bearshard-sphere-like potentials. For fluids interacting with
some similarity in spirit to that given recently in Ref. 22, softer potentials, such as in the Gaussian core niottés
where projector—operator techniques are used to obtain firshight be a reasonable approximation to make, particularly
the Smoluchowski equation and subsequently an equation evhen the fluid is at high densities where each particle inter-
motion for the fluid one-body density profile—the DDFT. acts with a large number of neighbors and so the momentum
Before proceeding with our derivation of the DDFT, in Sec.degrees of freedom can equilibrate faster. Since the particle
Il we give a brief introduction to the Smoluchowski equa- number is conserved, we can expect the fluid to obey the
tion, expounding some of the physical assumptions concerreontinuity equation
ing the dynamics of the fluid that are implicit in this equa- N N
tion. In Sec. Il we proceed with the derivation of the DDFT dP(r=y _ —E V. [vP(rV,0)] (6)
of MT from the Smoluchowski equation. Section IV de- at = T
scribes an _importan_t app_lication of t_he DDFT to analyze theSubstituting Eqgs(4) and (5) into (6), one finds
short- and intermediate-time dynamics of spinodal decompo-

sition relevant to colloidal fluids. Finally, in Sec. V we make dP(rN,t) NN N N
some concluding remarks. T:i:El ]241 Vi .Tij [ke TV + VU (r ) JP(r7, ).

™

ll. THE SMOLUCHOWSKI EQUATION If the potential energy termU(rN,t)=0, then Ij=Tr¢;

The Smoluchowski equatiéi?’ is a Fokker—Planck =pBDdjj, whereD is the diffusion coefficient and Ed7)
equation(or generalized diffusion equatipior interacting reduces to the diffusion equation, a/¢t)P(r™t)
Brownian particles. A physically intuitive way of arriving at =BI'S;VZP(r",t). For a system of interacting particles the
this equation, e.g., Ref. 24, proceeds as follows: For a fluidliffusion tensor does not, in general, take such a simple
of N Brownian particles, one imagines applying a hypotheti-form.?*?® However, if we neglect the hydrodynamic interac-
cal force on the particles, where the force on jtreparticle ~ tions, we can replackj; by its mean-field valuel’§;; , and
is Fj:—vjqf(r'\') (rN={ry,r,--ry} is the set of position then Eq.(7) reduces to a generalized diffusion equation,
coordinates for thé\ particles. The equilibrium probability ~termed the Smoluchowski equation,
density function in this situation will be aP(rN 1) N

1 — T2 NilkeTV+ VU DIPNY. (@)
P(fN)=Zexd—ﬁ‘l’(rN)—BU(fN)], 3 =t

_ o _ _ More formally, the Smoluchowski equation is the Fokker—
whereZ is a normalization factor=1/KkgT is the inverse Planck equation for a system bf Brownian particles in the

temperature, and)(r™) is the potential energy due to the |arge friction limit2>252"The Langevin equation for a sys-
interparticle interactions and any other external potentialstem of N Brownian particles of mass: is

Taking the gradient of Eq.3) we obtain

dri(t) _ dri(t) .

v,P(rY) e M U (AR TN C)

FJIVJU(TN)-FkBTw. (4)

_ _ _ o whereX;(t) = (&(t),&(t),&(t)) is a white noise term with

If F; is switched off, there will be a force F; driving the  the property( £(t)) =0 and(&(t) &(t')) = 2kgT&;; 8+ (t
diffusion of particlej. We now assume that for time scales —t’). When the friction constarff ! is large, we may ne-

> g, the Brownian time scale, the velocity of thth par-  glect the second derivative with respect to time in E3),

ticle is and we obtain the stochastic equation of mofidn,
N dr;(t) N
Vi:_gl T -F (5) T:—FViU(r ) FTX (). (10

whereI';;= BD;;(r") is the mobility tensor and; is the  The (generalizeyl Fokker—Planck equation for the distribu-
diffusion tensor. We also assume that we can use the expreion function P(rM,t) corresponding to this Langevin equa-
sion in Eq.(4) for the forceF; in (5), with the equilibrium tion is Eq.(8).%2%%’

probability density functiorP(r™) replaced by the nonequi-
librium probability density functiorP(rN,t) andU(rV) re-
placed byU(rN,t) (i.e., there may be a one-body time-
dependent external potendialt is implicitly assumed that as In this section we derive an equation for the time evolu-
the particles interact, the momentum degrees of freedortion of the one-body density profile(r,t), from the Smolu-
equilibrate much faster than the positional degrees of freeehowski equation, Eq(8). For a similar approach based

IIl. DYNAMICS OF THE ONE-BODY DENSITY PROFILE
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solely on pair potentials see Refs. 24, 29, and 30. The ond-rom equilibrium statistical mechanics one also knows that
body density is merely the integral of the probability distri- c*)(r) is equal to the functional derivative of the excess

bution function, (over idea) part of the Helmholtz free energy functioral,
oF r

p(rl,t)=Nf drz"'J dry P(r',t). 11 C(l’(r)=—ﬂﬂ, 17)
op(r)

Similarly, the two-body density is evaluated at the equilibrium densiffzenerallyc®)(r) is a

functional of p(r).] Making the approximationthat these
P(z)(rl,rz,t)ZN(N—l)f dr3---f dryP(rNt), (12 identities, Eqs(16) and(17), valid for the equilibrium fluid,
hold also for the nonequilibrium fluid and substituting into
and in general the-particle density is Eg. (15, we obtain the DDFT equation, stated without jus-
NT tification by Evandsee Eqs(166) and(167) of Ref. 5], and
)/ pN ) — : N derived much more convincingly, for the case of fluids inter-
P (N=n)! Jdrnﬂ jdrN P, 13 acting solely via pair potentials, by MTi.e.,

Using Egs(11)—(13), and assuming that the potential energy . ap(r,t) SF[p(r,t)]
function can be expressed in terms of a one-body external . W
potential acting on each partic,(r;,t), and that the par- '
ticle interactions are a sum of pair potentials,(r;,r;), ~ WhereF[p(r,t)] is the Helmholtz free energy functional,
three-body potentials;(r;,rj,ry), and higher body interac-

\%

p(r,H)V , (18)

tions, F[p(r,t)]szTf dr p(r,t)[In(p(r,t)A%)—1]
N 1 N
N — X _ L.
U0 =2, Veulri 0+ 5 20 24 valrior) FElp(r0]+ [ o Vedr 00, (19
1 N The first term is the ideal gas free energdyis the de Broglie
*5 PN (TN INMEREE (14 wavelength. In obtaining Eq(18) by using Egs.(16) and
k#j#i J#i 1=1 . . e .
(17), which are strictly equilibrium results, we are effectively
then we find that on integrating E¢B), one obtains assuming that the correlations between the particles when the
ap(r i) fluid is out of equilibrium are equivalent to those for an
Ffl%=kBTVrfp(fl,t)+V1[P(F1,t)V1Vext(r1,t)] equilibrium fluid with the same one-body density profile
p(r,t).
We can obtain further insight into the status of Etf)
+V1J drp p®(ry,r, ) Viva(ry,ry) by rewriting it as follows:
ELLAULIE T 20
+Vlf drzf drsp(s)(rl'rz,rs,t) ot - [p(ry ) M(ra )]1 ( )
X Vy0a(Fy,Tp,Fa) o . (15) where —V u(r,t)=—V(SF[ p]/ p) is the net driving force

acting on a particle located at,f). The chemical potential
We note that ifdp(r,t)/dt=0, then Eq(15) is equivalent to  obtained from Eq(19) has three contributions,
the derivative of the first equation of the YBG hierarchy.

S o . SF[p(r,t)]
For a fluid in equilibrium there is an exact sum rdle = (1) = wig(r,t) + wid(r,t) + rt).
which relates the gradient of the one-body direct correlation ~ op(r,t)  © )~ Hdn T Aind s el
function to the interparticle forces acting on a partickecall (21)

that —kgTc!*)(r) is the effective one-body potential due to The first contribution is the ideal gas entropic term(r,t)
interactions in the fluil If the particles interact solely =kgTInA%p(r,t), the second contribution, wiy(r,t)
via pair potentials: —kBTP(f)VC(l)(f)Zf_df’ P(z)(f'_r') =—kgTcM(r), is that due to the interactions with the other
X Vuy(r,r'). This result can be generalized straightfor- particles in the fluid, and the final term is simply the external
wardly to fluids where the particles interact via many-bodypotential, ey(r,t) = Vex(r,t). As noted by MT for nonin-

potentials, Eq(14), giving teracting particlesy;=0, and Eq/(20) reduces to the exact
kg Tp(r)Ve®(ry) equation for the diffusion of an ideal Brownian gas, i.e.,
P2 2P0 V2 ()4 V(1) PV (1t
:f Ay pO(F1.02)V0s(Frita) =k TV?p(1, )+ VI p(r,)V Ve, 1)].
(22)
+f drzj drg p®(ry,ro,ra)Viva(ry,ro,ra)+--- For an inhomogeneous interacting fluid in equilibrium the
density profile satisfi@s

SF[p(r)]

= u=constant, 23
o) M (23

=n§=:2Jdr2---fdrnp(“)(r”)Vlvn(r”). (16)
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where the Helmholtz free energy functiodlp] is given by 0.1 T T T

Eq. (19) with p(r,t) replaced byp(r) andV,(r,t) replaced

by Veu(r), so there is no net driving force on the particles. It 0.1 1 A 7
follows that for a time-independent external potential,

Vexd(r 1) —Vey(r), ast—oe, regardless of the initial profile 0.09 ]
p(r,t=0), Eq. (18) will yield the same one-body density

profile in the limitt—oo as does the equilibrium DFfi.e., s 008 ]

£

the solution to Eq(23)] for the same external potential. The
present derivation provides, we believe, additional insight to ~£' 0.07
that of MT®into the physics incorporated into E@Q.8) (the

key DDFT equation Assuming one has an accurate expres-  0.06
sion for the Helmholtz free energy functional E9), and in

particular for the excess Helmholtz free energy functional, 905
Eqg. (18) should provide an accurate description of the dy-
namics ofp(r,t) for a system of Brownian particles. 0.04

To

binodal

spinodal

0 0.1 0.2 0.3 0.4
n

IV. SPINODAL DECOMPOSITION . . ) . . . .
FROM THE DDFT EQUATION FIG. 1. Phase diagram for a fluid composed of particles interacting via pair

potentials of the form in Eqg38)—(40), calculated from the free energy of

In this section we apply the DDFT derived in the pre- Eq. (4)). n=mp,o°/6 is the packing fraction ankkTo™/a is the(red_uced

. . . . . . temperature. The path frod to B denotes the quench corresponding to the
ceding section to fluid spinodal decomposition. Since the baz. i in Figs. 2 and 3.
sis for the DDFT is the Smoluchowski equation, an equation
of motion for Brownian particles, we expect our theory to be
particularly relevant to spinodal decomposition in colloidal
fluids, rather than molecular fluids. In colloidal fluids friction ever, in a deep quench far from the spinodal, spinodal de-
with the solvent results in a much faster equilibration of thecomposition is the mechanism generally expected for phase
momentum degrees of freedom compared with those of theeparation.
particle positions. However, since we do not explicitly in- In a fluid undergoing spinodal decomposition three dif-
clude the particles of the solvent in which the colloids areferent regimes can be distinguished. For early times after the
suspended, our theory neglects the hydrodynamic interaguench, the amplitude of the density fluctuations are small
tions that may be significant to spinodal decomposition inand theories linear in the density fluctuations such as the
some colloidal fluids. well-known Cahn—Hilliard theod?® (see also Refs. 29, 32,

When a(colloidal) fluid which exhibits liquid—gas phase 33, 36, and 3V provide a good description of thigarly)
separatiorfor more generally fluid—fluid phase separajin  stage of spinodal decomposition. At intermediate times the
quenched to a state point in the region of the phase diagramensity fluctuations can be large, but sharp interfaces be-
where there is coexistence, the fluid can phase separate tween domains of gaslike and liquidlike regions have still not
two distinct ways. The first mechanism is that which occursformed?® At later stages there are sharp interfaces between
when the state point to which the fluid is quenched is near telomains of liquid and gas and successful theoretical descrip-
the binodal. In this case phase separation generally occutions of the later stage dynamics of spinodal decomposition,
via nucleationof droplets of one phase forming in the other such as the Allen—Cahn thedfy(see also Refs. 32, 33, and
phase®?% For example, if the fluid is quenched to a state39), focus on the dynamics of the interfaces.
point inside the binodal on the liquid side, then bubbles of  First, in Sec. IV A, we shall use the DDFT formalism to
the gas phase can nucleate in the bulk of the metastablgerive a generalization of thelinean Cahn—Hilliard
liquid. theory?*3® similar to that described in Refs. 29, 36, and 37,

However, if the fluid is quenched to a state point well for the early stages of spinodal decomposition, when the
inside the binodal, then a different mechanism for phaselensity fluctuations are small. Then in Sec. IVB we will
separation is possible: spinodal decomposition. Spinodal deroceed to derive a nonlinear theory which we believe may
composition is characterized by the exponential growth obe applicable for the dynamics of spinodal decomposition at
density fluctuations of certain wavelengfis® In (mean-  both short and intermediate time scales. Results of explicit
field) theoretical descriptions, liquid—gas phase separation isalculations for a model fluid are given in Sec. IV C.
determined by the occurrence of a van der Waals loop in th
Helmholtz free energy per particlé(v), wherev is the
volume per particle. Spinodal decomposition is predicted to  We consider spinodal decomposition in the bulk of a
occur in regions of the phase diagram whergf(dv?);  fluid, so we selq(r,t)=0 in Egs.(18) and (19) and con-
<0, i.e., regions where the isothermal compressibjityis  sider small density fluctuatiofgr,t) = p(r,t) — p, about the
predicted to be negative. The boundary to this region, théulk fluid density,p,, i.e., we are considering a homoge-
spinodal, is defined by the locus 084f/dv?)t=0 in the  neous fluid which has been rapidly quenched to the region of
phase diagram. Experimentally there is not necessarily the phase diagram inside the spino@alb., fromA to B in
sharp distinction between regions where phase separation oEig. 1) and we seek those wave numbkror which density
curs via nucleation and via spinodal decomposition. How-luctuations grow. From Eq$17), (18), and(19) we obtain

%\. Early stages of spinodal decomposition
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dp(r,t)
(TkgT) = = V2(r,0) = py V2001,

—V[p(r,t)Ve®(r,1)]. (24)

This approach is basically that of Refs. 5 and 36. In Ref. 5

Evans writes down Eq18), and then linearizes ER4) inp
by Taylor expanding:‘*) about the bulk fluid value, giving

scA(r)

C(l)(r):C(l)(OC)+ f dr’ W

p(r,H)+0(5%),
Pb

(29

where cM(0)=cM[py]=— Buex and uey is the excess
chemical potential. The second term simplifies by recalling

o) &Fefp]
dp(r') — " op(r)ép(r)

=c@(r,r")y=c@(r—r'[;pp),

(26)

A. J. Archer and R. Evans
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FIG. 2. The functiorS(k)=(1—p,&(k)) ~* calculated using Eq43) at the
state poiniinside the spinodawith »=0.2 andkgTo*/a=0.05, pointB in

for a homogeneous fluid of spherically symmetric particlesFig- 1. Note that fok<k., wherek.o=0.8, S(k) <0. In the inset we plot

For an equilibrium systenc®(r;p,) is the Ornstein—
Zernike pair direct correlation function of the fluid of density
pp - Substituting Eq(25) into Eq. (24), keeping only terms
that are linear in the fluctuatidh, we obtain>3®

dp(r,t
(FkBT)’l—p;t )

=V27)(r,t)—pr2H dr’ c@(|r=r'|;pp)p(r',t)|.

(27)

Fourier transforming yields an equation for the time evolu-

tion of the different Fourier components

;3(k,t)=f dr exp(ik-r)p(r,t), (28

and one obtains

ap(k,
at

t)

(TkgT) 2 = K2p(k,t) + ppk2e(K)p(k,1), (29)
where &(k) = fdr expik-r)c®(r;p,). The solution of Eq.
(29 is

p(k,t)=p(k,0)exd R(k)t], (30

where R(k)=—TkgTk?(1— p,e(k)). For an equilibrium
fluid, at a state point outside the spinodaé(k)=(1
—pp&(K)) "t is the usual static structure factbf®and, since
for an equilibrium fluidS(k) >0 for all values ofk, it fol-
lows that outside the spinod&(k) <0 for all values ofk.
From Eq.(30), all Fourier components will decay implying,
of course, that the fluid is stable.

R(k) o?BIT = —k?a?/S(k), the factor appearing in the exponential in Eq.
(30). In the initial stages of spinodal decomposition density fluctuations with
wave number&<k, grow exponentially, whereas fée>k, the fluctuations
are damped.

ploys a particular approximation, namely E¢3), for ¢(k).

k. is obtained as the solution to the equatiost(k.)=1.
Thus we find that inside the spinodal region there will be
some density fluctuations with a wave numberk. whose
amplitude will grow exponentially:?®2%34-3*The deeper the
quench into the spinodal region, the larger the valudoof
can be.

This general picture of the exponential growth of certain
Fourier componentgmodes was obtained originally by
Cahn and Hilliard***who derived an explicit approximation
for the functionR(k). Cahn—Hilliard theory for spinodal de-
composition is usually derived by considering the continuity
equation(2), together with the following approximation for
the current:

SF[p(r.)]
op(r,t) ’

whereM is a mobility constant and the function@lis cho-

sen to be of thep* Ginzburg—Landau form. Generalizing
slightly we assume that the free energy functional has the
square-gradient form

i(r,t)=—MV (31)

1
Fsg[P(r,t)]=Jdf{fo(p(r,t))Jr §K|Vp(r,t)|2}- (32

wherefq(p)=pf(p) is the Helmholtz free energy density for

On approaching the spinodal from the single phase reg,q homogeneous fluid of densiy and we treatk as a

gion one finds thatS(k=0)—; at the spinodal (1
—ppt(k=0))=0. Within the mean-fieldvan der Waals-

type) theory of fluids to be described below, we find that

inside the spinodaB(k) can take negative valu®sand thus
the quantityR(k) can have positive values fé&< k., where
the value ofk, depends upon how far into the spinodal re-

positive constant. From E@2) one then finds

afO(p(r ,t))
Vz{ ap(r,t)

This equation is then linearized about the bulk dengjtyto

ap(r,t)

p (33

—KVzp(r,t)}

gion one has quenched, see for example, Fig. 2, which enobtairt®3¢
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ap(r,t) ) 7*f o~ order parameter, rather than a constant, in a Cahn—Hilliard
o I —KV=|p(r,1). (34 treatment—see Eq10) in Ref. 43; we shall discuss this
Po further in Sec. IVD. In order to proceed further we must

On Fourier transforming Eq(34) one obtainsap(k,t)/at assume a particular form for the Helmholtz free energy func-
=Ry(K)p(k,t),  where ng(k):_Mkz(Kk2+(52fo/ tional, from which we can obtaig(k) and thus solve Eq.
dp?),,), the solution to which is Eq(30), with R(k) re-  (37) numerically.

placed byRy (k). Note that ¢*fo/dp?), is negative inside

the spinodal. It is clear from this argument that Cahn-—

Hilliard theory can therefore be viewed as a special case of. Results for a model fluid

the more general linear theory presented in the earlier part of
this sectiorf! By employing a free energy functional more
accurate thar{32) one should be able to incorporate short

We consider a fluid composed of particles interacting via
pair potentials of the form

wavelength density fluctuations as well as the long wave- )=y, (1) +ov,(r), (38
length,k— 0, fluctuations accounted for by a square-gradient
approach. where
©, r=so
B. Spinodal decomposition at intermediate times vpdr)= 0 >0 (39

In order to go one step beyond the lowest ordierear
theories described above, we consider an approximate excei§she hard-sphere pair potential, and the attractive part of the
Helmholtz free energy functional, obtained by Taylor ex-pair potential has a Yukawa form
panding the excess Helmholtz free energy about the uniform
density. By integrating Eq(25) and omitting terms beyond valr)=—
O(p?) we obtain &

andexp(—\r)

AaNr ’ (40)

wherea and \ are positive constants. Provided the decay
length A~ is sufficiently large this model fluid exhibits
kT stable, with respect to freezing, liquid—gas phase separation.
— _f drf dr’b(r,t)”f)(r’,t)c(z)(|r—r’|;pb). Pair potentials of this form are often used as crude models

2 for simple fluids but they could be used to model the effec-

(35 tive (depletion) potential between the colloids in a colloid—

Rolymer mixture solutioff by choosing the pair potential
parameters in Eqg39) and (40) to mimic the well-known
Asakura—Oosawa potentidl=*’ In calculations for our
model system we approximate the excess Helmholtz free en-
ergy functional by

Fodpl=Fol ol + x| 5010

This truncated quadratic density expansion is often used i

the theory of inhomogeneous fluids in equilibridntsing

Eq. (35) in Eqg. (24) we find

dp(r.t)
ot

(TkegT)~* =VZ(r,t) = V| (pp+5(r,1))

1
Folpl=Fip1+ | r [ ' p(r.00(r" 00alr—r'D,

XJdr’7)(r’,t)Vc(2)(|r—r’|;pb) . 1)

(36) whereFQip] is the reference hard-sphere Helmholtz excess
The first two terms on the right-hand side are those enterinree energy functional and attractive interactions are treated
the linear theory(27) while the third term is the only nonlin- in a mean-field fashiohIf we employ the Rosenfeld Funda-
ear one which arises for the function@s). Fourier trans- mental Measure Theot§*Cfor F p], this nonlocal func-
forming Eq.(36) we obtain tional generates the Percus—Yevick pair direct correlations
functions in a hard-sphere fluid. Thus, using Eg6) we

ap(k,t . ) ! S
(FkBT)*l% obtain the following simpldrandom phaseapproximation
= —K2p(k,t) + ppk2&(K) p(k,t) c@(r;pp)=cpy(r;pp) — Bualr), (42)

1 wherecpy(r) is the Percus—YevickPY) approximation’ for
+Wf dk" k-k"p(k",)e(k")p(lk—=k'[,t), (37  the hard-sphere pair direct correlation function. With this
choice the Fourier transform af®)(r) can be carried out
which should be compared with E(9); now there is an  analytically
additional term on the right-hand side is nonlineap {tk,t).

This term describes the coupling between the different Fou- R Ban?
rier components of the density fluctuatiofmodes.*? An Ek)=Cpy(K) + 3272 (43)

equation almost equivalent to E(R7) was derived recently
by considering the mobilitp to be a linear function of the whereépy(Kk) is given by*
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= 77(—71, (45)
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2
7(1+27)?
T o —
2(1 77) FIG. 3. Plot ofp(k,t) for a quench to the state poikTo®/a=0.05 and

- . - N . ) _ P
depend uponm= = 0'3/6, the packing fraction. The phase 7=0.2, point B in Fig. 1. p(k,t) is shown for timest* =kgTI ot
P pon; Pb P 9 P =45,50,55(in the inset and t* =60,65,67,69(in the main figurg The

Fj'agram for _Our m_OdeI fluid is displayed in Fig. 1. The results obtained from the linear thedyq. (29)] are denoted by a dashed
liquid—gas binodal is calculated by performing the commoniine, and those from the nonlinear thedifq. (37)] by a solid line. The
tangent construction on the Helmholtz free energy per pareffect of the coupling between Fourier componefmt®des with different
ticle for the bulk fluid, f(pb):fPY(pb)_pbalzv obtained Wave numbers, de;cribed by the nonline_ar theory, _becomes increasingly
. o . significant at later times, whereas for earlier tin{ese inset the results
from Eq.(41); fpy(pp) is the PY compressibility approxima-  from the two theories are indistinguishable.
tion for the hard-sphere Helmholtz free enetgyhe spin-
odal is the locus of points for which?f/dv?=0, wherev
=1/p,. For simplicity we choose to set the inverse lengthfunction corresponds to wave numbérgor which density
scale parameter in the attractive part of the pair potentialluctuations grow exponentially in the early stages of spin-
equal to the hard-sphere diameter, .= o. The quantity —odal decomposition.
a=[drv,(r) determines the energy scale. We expect the Some typical plots op(k,t) at early times are displayed
present model fluid to exhibit a freezing transition for largein the inset to Fig. 3, for a quench to poiBtin Fig. 1. The
7, but we do not consider this here. plots are for the reduced times =kgTI'o’t=45, 50, and
We are now in a position to use our approximate form55 in the inset and 60, 65, 67, and 69 in the main figure. The
for &¢(k), obtained from Eq943) and(44), together with Eq.  results obtained from the linear theory, EQ9), and the
(37), to calculatep(k,t) during the early and intermediate nonlinear theory, Eq37), are indistinguishable for the three
times of spinodal decomposition. Wassumethat att=0 earliest timegsee inset However, at later times the linear
p(k,t) takes a small, constant, positive value for all values oftheory (dashed ling continues to give just a single peak in
k and choosé(k,t=0)=10"8. The later time dynamics are p(k,t) that grows exponentially, whereas the nonlinear
insensitive to the specific choice of value fotk,t=0) be-  theory(solid line), which includes the effect of coupling be-
cause for short times, when E@O) describes the dynamics tween Fourier components with different wave numbers,
of spinodal decomposition, Fourier componeritasodes  shows that components with wave numbers different from
with wave numbek>k. do not grow and are exponentially that predicted by the linear theory can also grow. We see that
damped, whereas components wkkik. grow exponen- the effect of the coupling incorporated into the nonlinear
tially with the initial value p(k,t=0) as a prefactor. Thus theory becomes increasingly significant at intermediate
choosing a different value fgi(k,t=0) is effectively a shift times, producing first a shoulder which grows into a bump in
of the time axis. For a quench to the state pdigTo®/a  p(k,t) at a larger wave numbeko=0.8 than that of the
=0.05 and»=0.2(i.e., the quench to poim, in Fig. 1) the  main peak which first appears p(k,t) at early times.
early time growth gives a single peak jitk,t) at ko=0.6
corresponding to where the maximum R{k) in Eq. (30) D. Discussion

occurs—see the inset to Fig. 2. We find tiR{t) obtained ) ) ) , .
In simulation studies of spinodal decomposition the

using Eqgs.(43) and (44) for €¢(k) has a similar form to that it that is of ) .
extracted from molecular dynamics simulation results for a?u_an.tlty that is often measured in order to characterize the
luid is the structure factor

Lennard-Jones fluid deep inside the spinodal regfdviore-
over, the overall shape &(k) and the values df.o are in 1 N

keeping with results for the Lennard-Jones fl(fior similar S(k,t)= N-E (exp(ik[ri(t)—r;(t)]), (46)
state pointsobtained by Evans and Telo Da Gaffaising a =1

theory equivalent to the present, and by Abralfamsing a  where(: --) is an ensemble average over different realizations
perturbation theory approach. We also plot in Fig. 2 the funcof the stochastic noise in the interval up to tite&=or small
tion S(k)=(1—p,e(k)) "% the negative portion of this values ofk one finds thaf
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V. CONCLUDING REMARKS

1
S(k,t)=A(t)+ —[p(k,1)]%, 4 . : ,
(kO=A(1) N[p( )] @7 This paper falls broadly into two parts. In the first part

we provided an alternative derivation of the DDFT devel-
oped by MT3* Our derivation elucidates the physical ap-
proximations made in order to construct the theory. The start-

whereA(t) is a(smal) wave number independent baseline. ing point is the Smoluchowski equati¢s), the (generalized
. . A 2 l
Thus, to a reasonable approximatigik,t)«[ (k)" for Fokker—Planck equation for the probability distribution

small values ok (see Refs. 29 and 36Simulation studies of Iunction P(rN.1) corresponding to the Langevin equation of

the early stages of spinodal decomposition in model Couo'damotion, Eq.(10). This stochastic basis for the theory means

fluids such as that in Ref. 53, where the authors consider fhat the theory should be applicable to colloidal fluids where

ﬂu',d compgsed _Of particles interacting via the Lenqard—JoneBecause of interactions with the solvent particles the momen-
pair potenual, display the growth of a single peakSk,t). tum degrees of freedom of the colloids equilibrate much
This is, of course, a general feature of the very early stagefgter than the positional degrees of freedom. In atomic flu-
of spmog;azl decomposition and is found in many otheriys the equilibration time scale for the momentum degrees of
systems’” Thus, our results for short times showing the freedom can be of the same order as that for the relaxation of
growth of a single peak irb(k,t), and therefore also in positional degrees of freedom and therefore the present
S(k,t), are in keeping with simulation studies. theory may break down for atomic fluids. However, because
The development of a second peakouldey in S(k,t)  the correct equilibrium limit is built into this theory, i.e.,
at intermediate times after the quench, at a larger value of whendp(r,t)/9t=0 the theory is equivalent to E(R3), it is
was observed in the two-dimensional calculations of Macfeasible that the present theory would give reasonable results
et al, where they considered a nonlinear extension offor atomic fluids, assuming that one also has a reliable ap-
Cahn—Hilliard theory for polymer mixtures. The order pa- proximation for the excess Helmholtz free energy functional,
rameter for their theory is the deviation of the concentrationF.,[ p]. The fact that the correct equilibrium limit is built in
c(r,t)=C(r,t)—Cy [i.e., c(r,t) replacesp(r,t) in our s, we believe, one of the most appealing features of the
theory]. They used the approximation that the mobilly  theory.
=Mgy+Mjc(r,t), i.e., a linear function oft(r,t), together The further approximatioribeyond assuming that the
with a square-gradient Helmholtz free energy functional inSmoluchowski equation holgsnade in deriving the DDFT,
Eq. (31). By linearizing 5F/8C about the average concen- EQ.(18), is to assume Eq$16) and (17), exact equilibrium
tration C, in the manner leading to E@34) along with the ~ results, are also valid for the nonequilibrium fluid. This ap-
continuity equation(2), Mao et al*®> obtain a nonlinear Proximation is equivalent to assuming that the two-particle,
theory that is very similar in structure to that which we ob- three-particle, and higher order correlations in the nonequi-
tain using Eq(1) with a constant mobility together with the Iib_rium fluid are equivalent to thoge in an equilibrium fluid
truncated functiona(35). The main difference between the With the specified one-body density profile. We expect that
two approaches, other than the choice of approximation fofl!iS @pproximation is a reasonable one to make and will not
the Helmholtz free energy function®,is that Maoet al*3 result in S|gn|f|cant fallur_es _o_f the theory, as long as other
have an adjustable parameter, the ratig/M,, that allows approximations can be justified. We therefore believe that

a tuning of the mobility for their polymer blend, whereas in Eq.(18) may weII. provide alrehable gccount of the dynamics
for a variety of different fluids, provided of course, that one

our approach we are effectively restricted to the choicehas an accurate approximation for the approp o]
M4 /M= 1/py. Their results also show that the second peak The second part of the present paper is congg@cerr{ed with

(sho_ulde) in S(k,t) resul'_[s from considering a theory that is the application of the DDFT to the problem of spinodal de-
n_onl_lr_1ear(se_c0nd orderin the orde_r parameter. The other composition. Our key result is E37). For early times after
significant difference from Ref. 43 is that the present theoryquenching the fluid, when density fluctuations are small in

uses a microscopic nonlocal function@s), and therefore amplitude, our theory reduces to the linear theory of Evans
includes the effects of interparticle correlations more accuy 4 Telo Da Gam3® Furthermore, this linear theory reduces
rately than a gradieriGinzburg—Landaltheory such as that 4 the Cahn—Hilliard theory if we were to use a square gra-
used by Macet al** Nevertheless, in the early and interme- giant Helmholtz free energy functional E€B2) rather than
diate times of spinodal decomposition, where sharp intefhe more accurate nonlocal functional, E@5). Cahn—
faces between gaslike and liquidlike domains have not yegjjjjiard theory’=3°is known to provide a successful quali-
formed, we should expect good qualitative agreement bertive description of the early stages of spinodal decomposi-
tween our results and those from the nonlinear Cahn-jon. Since the present theory incorporates all the effects that
Hilliard gradient theory of Maet al.** Mao et al. also found  Cahn—Hilliard theory describes, and provides a more accu-
that the presence of the nonlinear terms in their theory rerate treatment of short wavelength correlatirisshould be
sulted in a significant change in the connectivity of contoura reliable quantitative theory for the early stages of spinodal
plots of the order parameter from that found in the absencéecomposition.

of these terms Nl ;=0)—see Figs. 3 and 5 of Ref. 43. On However, the key feature of our theory is that it incor-
the basis of our present analysis we would expect this obseporates a “mode-coupling” ternffinal term on the right-
vation to be a general feature of spinodal decomposition atand side of Eq(37)] which describes the coupling between
intermediate time scales. different density fluctuation modes, an effect which becomes
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