73 research outputs found
Distribution of sulfur in power supply lignite from North Hungary
Abstract
The present article discusses the results of measurements carried out to assess the distribution of different sulfur types in lignite samples deriving from two opencast lignite mines near the villages of Bükkábrány and Visonta. These mines ensure the continuous supply of fuel for one of Hungary's largest thermal power plant. According to our findings no significant differences could be identified between the samples of the two mines based on their total sulfur (St) content. Both lignite types were classified as coals with medium-sulfur content according to the system of Chou (1990). A majority of total sulfur is accumulated in lignite, while in the intercalated carbonaceous shale total sulfur is present in minor amounts. Usually the sequence of the distribution of sulfur among the different bond forms in lignite collected from opencast mine of Visonta is as follows: pyritic sulfur (Sp) > organic sulfur (Sorg) > sulfate sulfur (SSOorg4).
In the samples collected from Visonta and Bükkábrány quantities of total sulfur were similar. However, some difference in their distribution among various sulfur types were noted. Although half of the samples were weathered and the amount of pyrite sulfur must have been higher in the weathered lignite of Bükkábrány preceding the oxidation process, the sequence of the distribution of sulfur was likely as follows Sorg ≥ Sp ≥ SSO4
Microstructural evolution and trace element mobility in Witwatersrand pyrite
Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing
Considering Soil Potassium Pools with Dissimilar Plant Availability
Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics
Microbial oxidation of Fe2+ and pyrite exposed to flux of micromolar H2O2 in acidic media
At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe 2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe 3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe 3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H 2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria
- …