12 research outputs found

    Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer

    Get PDF
    IntroductionProstate cancer (PCa) is the second most frequent cancer diagnosis in men and the fifth leading cause of death worldwide. Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) receptors are overexpressed in PCa. In this study, we have developed iron oxide nanoparticles (IONs) functionalized with the Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) ligands for dual targeting of Prostate cancer.MethodsIONs were developed with a thin silica layer on their surface with MPTES (carrying -SH groups, IONs-SH), and they were coupled either with a pharmacophore targeting PSMA (IONs-PSMA) or with bombesin peptide (IONs-BN), targeting GRP receptors, or with both (IONs-PSMA/BN). The functionalized IONs were characterized for their size, zeta potential, and efficiency of functionalization using dynamic light scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FT-IR). All the aforementioned types of IONs were radiolabeled directly with Technetium-99m (99mTc) and evaluated for their radiolabeling efficiency, stability, and binding ability on two different PCa cell lines (PC3 and LNCaP).Results and DiscussionThe MTT assay demonstrated low toxicity of the IONs against PC3 and LNCaP cells, while the performed wound-healing assay further proved that these nanostructures did not affect cellular growth mechanisms. The observed hemolysis ratio after co-incubation with red blood cells was extremely low. Furthermore, the 99mTc-radiolabeled IONs showed good stability in human serum, DTPA, and histidine, and high specific binding rates in cancer cells, supporting their future utilization as potential diagnostic tools for PCa with Single Photon Emission Computed Tomography (SPECT) imaging

    Chelator-free/chelator-mediated radiolabeling of colloidally stabilized iron oxide nanoparticles for biomedical imaging

    Get PDF
    The aim of this study was to develop a bioimaging probe based on magnetic iron oxide nanoparticles (MIONs) surface functionalized with the copolymer (p(MAA-g-EGMA)), which were radiolabeled with the positron emitter Gallium-68. The synthesis of the hybrid MIONs was realized by hydrolytic condensation of a single ferrous precursor in the presence of the copolymer. The synthesized MagP MIONs displayed an average D-h of 87 nm, suitable for passive targeting of cancerous tissues through the enhanced permeation and retention (EPR) effect after intravenous administration, while their particularly high magnetic content ascribes strong magnetic properties to the colloids. Two different approaches were explored to develop MIONs radiolabeled with Ga-68: the chelator-mediated approach, where the chelating agent NODAGA-NHS was conjugated onto the MIONs (MagP-NODAGA) to form a chelate complex with Ga-68, and the chelator-free approach, where Ga-68 was directly incorporated onto the MIONs (MagP). Both groups of NPs showed highly efficient radiolabeling with Ga-68, forming constructs which were stable with time, and in the presence of PBS and human serum. Ex vivo biodistribution studies of [Ga-68]Ga- MIONs showed high accumulation in the mononuclear phagocyte system (MPS) organs and satisfactory blood retention with time. In vivo PET imaging with [Ga-68]Ga-MagP MIONs was in accordance with the ex vivo biodistribution results. Finally, the MIONs showed low toxicity against 4T1 breast cancer cells. These detailed studies established that [Ga-68]Ga- MIONs exhibit potential for application as tracers for early cancer detection.Web of Science117art. no. 167

    Radiolabeled Nanoparticles in Nuclear Oncology

    Get PDF
    During recent years, a plethora of pioneering radiolabeled nanoparticles have grown to be an integral part of nuclear medicine as theranostic tools. Herein, we focus on the most representative examples of nanoparticles of the past decade, which have been investigated in conjunction with radioisotopes aiming to serve as drug delivery or imaging agents. The present review highlights the key attributes of each nanosystem and the following classification of radiolabeled nanovehicles is based on increasing mass number (A) of radioisotopic elements

    Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice

    No full text
    The use of ordered mesoporous matrices, and in particular carbon-based mesoporous nanoparticles has shown great potential towards enhancing the bioavailability of orally administered drugs. Nevertheless, elucidation of the in vivo absorption, distribution, and excretion of such carriers is essential for understanding their behaviour, and radiolabelling provides a very useful way to track their occurrence inside the body. In this work, uniform spherical CMK-1-type ordered mesoporous carbon nanoparticles have been radiolabelled with Technetium-99m (99mTc) and traced after oral administration to mice. Ex vivo biodistribution studies showed that the radiolabelled nanoparticles accumulated almost exclusively in the gastrointestinal tract; complete elimination of the radiotracer was observed within 24 h after administration, with practically no uptake into other main organs. These findings along with the results from in vitro stability studies indicate that the spherical carbon nanoparticles examined could be safely used as drug carriers with minimal side effects, but also support the great value of radiolabelling methods for monitoring the particles’ behaviour in vivo

    Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents

    No full text
    Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer

    <sup>177</sup>Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer

    No full text
    The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was to evaluate the potential of iron oxide nanoparticles, coated with alginic acid and polyethylene glycol, functionalized with the chemotherapeutic agent doxorubicin and the monoclonal antibody bevacizumab, to serve as a nanoradiopharmaceutical agent against breast cancer. Direct radiolabeling with the therapeutic isotope Lutetium-177 (177Lu) resulted in an additional therapeutic effect. Functionalization was accomplished at high percentages and radiolabeling was robust. The high cytotoxic effect of our radiolabeled and non-radiolabeled nanostructures was proven in vitro against five different breast cancer cell lines. The ex vivo biodistribution in tumor-bearing mice was investigated with three different ways of administration. The intratumoral administration of our functionalized radionanoconjugates showed high tumor accumulation and retention at the tumor site. Finally, our therapeutic efficacy study performed over a 50-day period against an aggressive triple-negative breast cancer cell line (4T1) demonstrated enhanced tumor growth retention, thus identifying the developed nanoparticles as a promising nanobrachytherapy agent against breast cancer

    How Does the Concentration of Technetium-99m Radiolabeled Gold Nanoparticles Affect Their In Vivo Biodistribution?

    No full text
    Gold nanoparticles (AuNPs) radiolabeled with therapeutic and diagnostic radioisotopes have been broadly studied as a promising platform for early diagnosis and treatment of many diseases including cancer. Our main goal for this study was the comparison of the biodistribution profiles of four different concentrations of gold nanoconjugates radiolabeled with Technetium-99m (99mTc). More specifically, AuNPs with an average diameter of 2 nm were functionalized with a tridentate thiol ligand. Four different concentrations were radiolabeled with 99mTc-tricarbonyls with high radiolabeling yields (>85%) and were further purified, leading to radiochemical purity of >95%. In vitro stability of the radiolabeled nanoconstructs was examined in cysteine and histidine solutions as well as in human serum, exhibiting robust radiolabeling up to 24 h post-preparation. Moreover, in vitro cytotoxicity studies were carried out in 4T1 murine mammary cancer cells. In vivo tracking of the radiolabeled nanoconjugates at both concentrations was examined in normal mice in order to examine the effect of AuNPs’ concentration on their in vivo kinetics. Our work demonstrates that varying concentrations of radiolabeled AuNPs lead to notably different biodistribution profiles

    Bispecific PSMA-617 / RM2 Heterodimer for Theranostics Applications in Prostate Cancer

    No full text
    PSMA and GRPR protein receptors are upregulated during prostate cancer (PCa) progression, and thus they have both been used for diagnostic molecular imaging and therapy of the disease. To address tumor heterogeneity, we synthesized and evaluated the bispecific PSMA/GRPR ligand (3) with a 10 atom spacer between PSMA-617 (1) and the GRPR antagonist RM2 (2) generated with click chemistry and coupled with chelator DOTA, to enable radiolabelling. Ligand 3 was radiolabelled with 68Ga, [68Ga]Ga-3 and 177Lu, [177Lu]Lu-3. [68Ga]Ga-3 was tested with PCa cell lines PC-3 and LNCaP for its affinity for GRPR and PSMA receptors, lipophilicity, for its cell-binding specificity, time kinetic binding affinities and cell-internalization. Heterodimer 3 showed specific cell binding, similar affinities for PSMA receptor and GRPR and higher lipophilicity compared to monomers PSMA-617 (1) and RM2 (2), while total internalization rates and cell-binding were superior over monomers. Docking calculations showed that the PSMA-617 (1) /RM2 (2) heterodimer 3 can have binding interactions of PSMA-617 (1) inside the PSMA receptor funnel and of RM2 (2) inside the GRPR. In vivo biodistribution studies for [68Ga]Ga-3 showed dual targeting of PSMA-positive tumors and GRPR-positive tumors and fast pharmacokinetic properties, higher cancer cell-uptake and lower kidney uptake in comparison to the monomers

    Table1_Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer.docx

    No full text
    IntroductionProstate cancer (PCa) is the second most frequent cancer diagnosis in men and the fifth leading cause of death worldwide. Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) receptors are overexpressed in PCa. In this study, we have developed iron oxide nanoparticles (IONs) functionalized with the Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) ligands for dual targeting of Prostate cancer.MethodsIONs were developed with a thin silica layer on their surface with MPTES (carrying -SH groups, IONs-SH), and they were coupled either with a pharmacophore targeting PSMA (IONs-PSMA) or with bombesin peptide (IONs-BN), targeting GRP receptors, or with both (IONs-PSMA/BN). The functionalized IONs were characterized for their size, zeta potential, and efficiency of functionalization using dynamic light scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FT-IR). All the aforementioned types of IONs were radiolabeled directly with Technetium-99m (99mTc) and evaluated for their radiolabeling efficiency, stability, and binding ability on two different PCa cell lines (PC3 and LNCaP).Results and DiscussionThe MTT assay demonstrated low toxicity of the IONs against PC3 and LNCaP cells, while the performed wound-healing assay further proved that these nanostructures did not affect cellular growth mechanisms. The observed hemolysis ratio after co-incubation with red blood cells was extremely low. Furthermore, the 99mTc-radiolabeled IONs showed good stability in human serum, DTPA, and histidine, and high specific binding rates in cancer cells, supporting their future utilization as potential diagnostic tools for PCa with Single Photon Emission Computed Tomography (SPECT) imaging.</p
    corecore