8 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    DETECTING MELTWATER IN THE AMUNDSEN SEA POLYNYA REGION, WEST ANTARCTICA

    No full text
    The Amundsen Sea Polynya International Research Expedition (ASPIRE) (Dec 2010 - Jan 2011) investigated high latitude (71-75S, 110-120W) ocean dynamics to better understand the polynya's high biological production. Hydrographic and dFe data from Conductivity-Temperature-Depth (CTD) measurements highlight a melt-laden outflow emanating from the Dotson Ice Shelf (DIS) and flowing between 400-600 m throughout the Dotson trough. Observations in the polynya near icebergs show water mass mixing of meltwater and Circumpolar Deep Water and elevated concentrations of dFe, indicating that drifting icebergs could deliver iron into the mixed layer either from in situ melt or by mixing up melt-laden outflow waters from the DIS. Time series data at the DIS outflow indicate warming since 2007. Although nearby Pine Island Glacier (PIG) outflow is overall warmer and saltier than DIS outflow, calculated meltwater fractions show similar relative quantities of meltwater from both PIG and DIS

    Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight.

    No full text
    Abstract The National High Frequency (HF) Surface Current Mapping Radar Network is being developed as a backbone system within the U.S. Integrated Ocean Observing System. This paper focuses on the application of HF radarderived surface current maps to U.S. Coast Guard Search and Rescue operations along the Mid-Atlantic coast of the USA. In that context, we evaluated two algorithms used to combine maps of radial currents into a single map of total vector currents. In situ data provided by seven drifter deployments and four bottom-mounted current meters were used to (1) evaluate the well-established unweighted least squares (UWLS) and the more recently adapted optimal interpolation (OI) algorithms and (2) quantify the sensitivity of the OI algorithm to varying decorrelation scales and error thresholds. Results with both algorithms were shown to depend on the location within the HF radar data footprint. The comparisons near the center of the HF radar coverage showed no significant difference between the two algorithms. The most significant distinction between the two was seen in the drifter trajectories. With these simulations, the weighting of radial velocities by distance in the OI implementation was very effective at reducing both the distance between the actual drifter and the cluster of simulated particles as well as the scale of the search area that encompasses them. In this study, the OI further reduced the already improved UWLS-based search areas by an additional factor of 2. The results also indicated that the OI output was relatively insensitive to the varying decorrelation scales and error thresholds tested

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore