7 research outputs found

    Versatile in situ powder X-ray diffraction cells for solid–gas investigations

    Get PDF
    Two multipurpose sample cells of quartz (SiO2) or sapphire (Al2O3) capillaries, developed for the study of solid–gas reactions in dosing or flow mode, are presented. They allow fast change of pressure up to 100 or 300 bar (1 bar = 100 000 Pa) and can also handle solid–liquid–gas studies

    LaNi5-assisted hydrogenation of MgNi2 in the hybrid structures of La1.09Mg1.91Ni9D9.5 and La0.91Mg2.09Ni9D9.4

    Get PDF
    This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra

    Dynamic Micromapping of CO2 Sorption in Coal

    No full text
    We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics Of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2, We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details Of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 x 10(-7) cm(2)/min to more than 10(-4) cm(2)/min, depending on the CO2 pressure and location on the sample

    Magnesium Hydride Formation within Carbon Aerogel

    No full text
    Magnesium hydride nanoparticles were synthesized within a carbon aerogel (CA) scaffold using a dibutylmagnesium precursor. The synthesis reaction was tracked using small-angle X-ray scattering (SAXS) to analyze the structural evolution during MgH2 formation. The CA/MgH2 composite was also investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) to provide a better representation of the physical system. The CA has a large quantity of 2 nm pores as shown by nitrogen adsorption data. Both SAXS and TEM investigations confirm that MgH2 does form within the 2 nm pores but XRD proves that there is also a significant quantity of larger MgH2 particles within the system. Variations between hydrogen desorption isotherms from the CA/MgH2 composite and bulk MgH2 are detected that are indicative of changes in the decomposition properties of the small fraction of 2 nm MgH2 nanoparticles within the CA/MgH2 composite, changes which match theoretical predictions

    Mg2Si nanoparticle synthesis for high pressure hydrogenation

    No full text
    The Mg-Si-H system is economically favorable as a hydrogen storage medium for renewable energy systems while moving toward sustainable energy production. Hydrogen desorption from MgH2 in the presence of Si is achievable, forming magnesium silicide (Mg2Si). However, absorbing hydrogen into Mg2Si remains problematic due to severe kinetic limitations. The objective of this study is to reduce these kinetic limitations by synthesizing Mg2Si nanoparticles to limit the migration distance for magnesium atoms from the Mg2Si matrix to produce MgH2 and Si, thus improving the reversibility of the Mg-Si-H system. Mg2Si nanoparticles were synthesized using a reduction reaction undertaken by solid-liquid mechanochemical ball milling. Particle size was controlled by adding a reaction buffer (lithium chloride) to the starting reagents to restrict particle growth during milling. The reaction buffer was removed from the nanoparticles using tetrahydrofuran and small-angle X-ray scattering revealed an average Mg2Si particle size of ~10 nm, the smallest Mg2Si nanoparticles synthesized to date. High-pressure hydrogen measurements were undertaken above thermodynamic equilibrium at a range of temperatures to attempt hydrogen absorption into the Mg2Si nanoparticles. X-ray diffraction results indicate that partial hydrogen absorption took place. Under these absorption conditions bulk Mg2Si cannot absorb hydrogen, demonstrating the kinetic benefit of nanoscopic Mg2Si

    In Situ Neutron Diffraction Study of the Deuteration of Isotopic Mg11B2

    No full text
    Isotopic Mg11B2 has been deuterated at 400 °C and 800 bar, with the production of β-Mg(11BD4)2 observed by in situ neutron diffraction. A natural MgB2 sample has been deuterated under similar conditions and studied ex situ by high resolution X-ray synchrotron diffraction. In both cases, quantitative phase analysis (QPA) indicates a ca. 43% yield of the high temperature (β) phase, with the rest of the sample composed of unreacted MgB2 and Mg or MgD2. A joint refinement of the neutron and X-ray synchrotron data has been performed, yielding a final β-Mg(11BD4)2 structure in space group Fddd, with new D positions. Anisotropically broadened (odd, odd, odd) reflections are attributed to microstructural features, rather than antiphase boundaries. QPA of the isotopic sample indicates ca. 10% of B atoms are in a noncrystalline state. A broad feature is evident in the ex situ X-ray synchrotron data, covering a wide d-spacing range from ca. 3.80–5.45 Å, consistent with the formation of amorphous Mg(BD4)2 and amorphous B. For both samples, macroscopic fusing occurs, forming an extremely hard phase with a glassy black appearance, which is hydrogen impermeable and inhibits further formation of β-Mg(BH4)2. The fused surface regions of the sample have been studied by transmission (TEM) and scanning (SEM) electron microscopy. TEM studies show amorphous regions on the surface, consistent with amorphous B, and a Mg–B–O–H phase
    corecore