31 research outputs found

    The Role of Heating and Enrichment in Galaxy Formation

    Full text link
    We show that the winds identified with high-redshift low-mass galaxies may strongly affect the formation of stars in more massive galaxies that form later. With 3D realizations of a simple linear growth model we track gas shocking, metal enrichment, and cooling, together with dark halo formation. We show that outflows typically strip baryonic material out of collapsing intermediate mass halos, suppressing star formation. More massive halos can trap the heated gas but collapse late, leading to a broad bimodal redshift distribution, with a larger characteristic mass associated with the lower redshift peak. This scenario accounts for the observed bell-shaped luminosity function of early type galaxies, explains the small number of Milky Way satellite galaxies relative to Cold Dark Matter models predictions, and provides a possible explanation for the lack of metal poor G-dwarfs in the solar neighborhood and the more general lack of low-metallicity stars in massive galaxies relative to ``closed-box'' models of chemical enrichment. Intergalactic medium heating from outflows should produce spectral distortions in the cosmic microwave background that will be measurable with the next generation of experiments.Comment: 19 pages, 12 figures, accepted to ApJ, models refined and minor revisions mad

    Real-Time PyMOL Visualization for Rosetta and PyRosetta

    Get PDF
    Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schrödinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design

    Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa

    Get PDF
    Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating wholegenome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.The National Institute of Allergy and Infectious Disease and National Institutes of Health.https://www.pnas.orgpm2020Medical Microbiolog

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    Purpose We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Methods Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. Results We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. Conclusion Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD

    A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ 2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ 2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ 2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Predicting the Effects of Protein Variants using Structural Modeling, Large-Scale Data Integration, and Machine Learning

    No full text
    High-throughput sequencing technologies and new computational techniques for analyzing population genetics data are rapidly improving our understanding of disease susceptibility in humans and adaptation in a wide variety of organisms. These studies often discover nonsynonymous variation with large effects as even a single amino acid change can disrupt the folding, catalytic activity, and physical interactions of proteins. Current estimates predict that every human genome contains 10,000-11,000 nonsynonymous variations and, while we cannot currently characterize all this diversity experimentally, many variants that alter protein function can be identified computationally from destabilization of structural models or amino acid conservation. Methods for annotating variant effects in genome-wide association studies and exome sequencing studies use conservation and other sequence-based features to identify damaging variants but cannot predict the effect these variants have on protein function. Recent studies of de novo variants have demonstrated the power of these methods but also the need for additional information, such as physical models from the Protein Data Bank, to identify causal variants in disease association studies. I present VIPUR, a computational framework that integrates sequence analysis and structural modeling using the Rosetta protein modeling suite to identify and interpret deleterious protein variants. To train VIPUR, I collected 9,477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to variants in any organism’s proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. I show that VIPUR’s predictions of deleteriousness match the biological phenotypes for pathogenicity in ClinVar despite being trained on a different label. I use VIPUR to interpret mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation functional effects. Generalizable tools for interpreting genetic variants are especially needed with individualized exome sequencing, where clear indications of confident predictions are necessary to identify causal variation. I demonstrate VIPUR’s ability to select candidate variants associated with human diseases by predicting the effects of de novo variants associated with Autism Spectrum Disorders (ASD) in the Simons Simplex Collection. Compared to existing methods, VIPUR deleterious predictions have the greatest enrichment for mutations found in children with ASD. VIPUR’s predictions of deleterious effects are easily combined with other protein functional data to produce a small set of candidate genes and variants with specific mechanistic predictions. Although designed to aid in the discovery of causal variants, VIPUR can also simulate mutations to better understand specific protein functions. The distribution of VIPUR scores across all positions in a protein can be used to highlight conserved residues and provides an overall measure of protein conservation. When applied to levoglucosan kinase, a bacterial enzyme of interest for biofuel processing, VIPUR neutral predictions have a five fold enrichment for beneficial growth mutations. While VIPUR is not designed to detect gain-of-function mutations, this enrichment suggests VIPUR scores can identify potentially beneficial mutations by removing clearly deleterious ones. When applied to TP53, a human protein that is mutated in nearly half of all cancers, VIPUR score trends highlight the most common mutations in the COSMIC database, suggesting other variants that may have similar effects on tumor growth. VIPUR and the large-scale data analysis empowering it will aid in the interpretation of protein variation by providing a detailed feature space to characterize protein functional effects and confident predictions of deleterious variation in Genome-Wide Association Studies, exome sequencing initiatives, and protein engineering
    corecore