10 research outputs found

    Effect of milling variables and high-energy mills on the NiAl intermetalic compound synthesis.

    No full text
    Realizou-se um estudo dos efeitos das variáveis de moagem e dos moinhos de alta energia sobre a síntese do composto intermetálico NiAl. A influência do poder de moagem, tamanho de partícula inicial de Ni, agente controlador de processo e dimensões dos corpos moedores durante a síntese do composto NiAl no moinho Spex foi quantificada utilizando-se um planejamento fatorial. Verificou-se uma significativa influência do poder de moagem no tempo de ignição da reação exotérmica de formação do composto NiAl, além da influência da interação entre o poder de moagem, agente controlador de processo e dimensões dos corpos moedores no tamanho médio de partículas dos produtos das moagens. O rendimento no moinho Attritor demonstrou-se dependente do poder de moagem e também da quantidade de agente controlador do processo durante a moagem de misturas de pós de Ni e Al. A síntese por combustão de pós mecanicamente ativados no moinho Attritor levou à formação de NiAl3, Ni2Al3 e NiAl ou somente NiAl, dependendo da temperatura de síntese. Conduziu-se a tentativa de determinação experimental, através da técnica de calorimetria diferencial de varredura, das entalpias de formação dos compostos intermetálicos NiAl3, Ni2Al3, NiAl e Ni3Al; os valores encontrados para Ni2Al3 e Ni3Al foram, respectivamente, 167 kJ/mol e 93 kJ/mol. A formação de NiAl no moinho planetário, ao contrário do verificado nos moinhos Spex e Attritor, ocorreu de maneira gradual e o tempo necessário para a formação do composto foi dependente da quantidade de agente controlador de processo. Para os moinhos planetário e Attritor estimaram-se as respectivas energias de moagens transferidas ao longo do processo e o composto NiAl obtido nestes moinhos foi parcialmente ordenado. O método de Rietveld foi utilizado para a determinação da quantidade de NiAl formado após a moagem nos moinhos planetário e Attritor e também para a estimativa dos tamanhos de cristalitos e da deformação da rede. Amostras particuladas obtidas nos moinhos planetário e Attritor foram consolidadas, sinterizadas a 1300ºC e caracterizadas por ensaios de flexão e microdureza Vickers; as amostras apresentaram um comportamento frágil em flexão e microdureza Vickers inferior em comparação ao valor encontrado na literatura.A study on the effect of milling variables and high-energy mills on the NiAl intermetallic compound synthesis was performed. The effect of ball-to-powder ratio, Ni particle initial size, the use of process control agent and milling media size on NiAl synthesis in a Spex mill was evaluated using a factorial design. It was shown that ball-to-powder ratio plays an important role in the ignition time of the mechanically induced reaction of NiAl intermetallic formation; moreover, an interaction of ball-to-powder ratio, process control agent and milling media size was found to affect the particle size of milling products. During milling of Ni and Al powder, the yield of an Attritor mill was found dependent on ball-to-powder ratio and the process control agent quantity. After combustion synthesis of powders, which were previously mechanically activated in the Attritor mill, monophasic NiAl or a mixture of NiAl3, Ni2Al3 and NiAl were obtained depending on synthesis temperature; however, swelling of samples was verified in both situations. The enthalpy of formation of Ni2Al3 and Ni3Al was measured using differential scanning calorimetry and the experimental values were, respectively, 167 kJ/mol and 93 kJ/mol. NiAl compound formation occurred through an exothermic reaction in Spex and Attritor mills, on the other hand, this intermetallic was gradually formed during milling in the planetary mill, and, in this milling device, the time for compound formation was dependent on process control agent quantity. Furthermore, the energy transferred to the powder during milling in planetary and Attritor mills was estimated, and the NiAl synthesized in these devices was partially disordered. Also, the Rietveld method was employed to determine the amount of NiAl synthesized in planetary and Attritor mills, and, also, estimate crystallite size and lattice strain of milling products. Finally, milling products of planetary and Attritor mills were consolidated and sintered at 1300ºC so that Vickers microhardness and flexion tests could be performed; these tests indicated a fragile behavior, and hardness lower than the value found on literature

    Bioactive Potential of 3D-Printed Oleo-Gum-Resin Disks: B. papyrifera, C. myrrha, and S. benzoin Loading Nanooxides—TiO2, P25, Cu2O, and MoO3

    Get PDF
    This experimental study investigates the bioactive potential of filaments produced via hot melt extrusion (HME) and intended for fused deposition modeling (FDM) 3D printing purposes. The oleo-gum-resins from benzoin, myrrha, and olibanum in pure state and also charged with 10% of metal oxide nanoparticles, TiO2, P25, Cu2O, and MoO3, were characterized by ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray microanalysis (EDXMA), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Disks were 3D-printed into model geometries (10 × 5 mm) and the disk-diffusion methodology was used for the evaluation of antimicrobial and antifungal activity of materials in study against the clinical isolates: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Due to their intrinsic properties, disks containing resins in pure state mostly prevent surface-associated growth; meanwhile, disks loaded with 10% oxides prevent planktonic growth of microorganisms in the susceptibility assay. The microscopy analysis showed that part of nanoparticles was encapsulated by the biopolymeric matrix of resins, in most cases remaining disorderly dispersed over the surface of resins. Thermal analysis shows that plant resins have peculiar characteristics, with a thermal behavior similar to commercial available semicrystalline polymers, although their structure consists of a mix of organic compounds

    Obtaining NiAl intermetallic compound using different milling devices

    No full text
    NiAl intermetallic compound was synthesized by mechanical alloying technique in planetary and attritor mills. The starting powders consisted of elemental mixtures of Ni and Al at Ni50Al50(at%) composition. In the planetary mill, compound formation occurred gradually during mechanical alloying, while the occurrence of a mechanically induced self-propagating reaction (MSR) can be suggested in the attritor mill. The NiAl obtained in both mill types was partially disordered with long-range order parameter not inferior to 0.66. Quantitative phase analysis using the Rietveld method was performed in as-milled samples, and this method was also employed to estimate changes in crystallite size and lattice strain of the NiAl produced during mechanical alloying. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.State of Sao Paulo Research Foundation (FAPESP)State of Sao Paulo Research Foundation (FAPESP) [07/50954-0]Coordination for the Improvement of Higher Education Personnel (Capes) [123/07]Coordination for the Improvement of Higher Education Personnel (CAPES)CAPESCape

    Energia de superfície para nanossuperfícies de TiO2 na direção (001)

    No full text
    In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Evaluation of the chemical composition and colour in long-life tomatoes (Lycopersicon esculentum Mill) dehydrated by combined drying methods

    No full text
    When tomatoes are submitted to treatments of drying, depending on the parameters and methods used, the concentration or degradation of nutrients can occur. The changes in the composition and colour were verified when different drying processes were used. Freeze drying, oven drying, the combination of both and also the effect of the pretreatment (blanching) using steam were studied. The fresh tomato composition was compared with the composition of dehydrated tomato powder. After dehydration, the moisture content reduced 78% from the total initial moisture. In addition, a nutrient concentration was observed with an increase of about 57% of citric acid content and 3% in the pH. The ash content also increased from 0.53% to 8% (15 times) and 60%, the carbohydrates from 3.94% to 60% (15 times) and the proteins were increased from 1% to 11% (10 times). The blanching resulted in different types of changes, such as greater stability for the proteins, carbohydrates, fat, lycopene and beta-carotene.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Optical properties of the MoO3-TiO2 particulate system and its use as a ceramic pigment

    No full text
    Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC

    Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films

    No full text
    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd

    Development of a Yellow Pigment Based on Bismuth and Molybdenum-Doped TiO2 for Coloring Polymers

    No full text
    An inorganic yellow pigment based on TiO2 containing minor amounts of bismuth and molybdenum compounds was developed without rare earths or highly toxic elements. The material was produced starting from a composition of 99% (mol%) of rutile TiO2 and 1% of MoO3, which were previously mixed and calcined at 1200 degrees C. The composition consisted of 99.8% of the above mixture and 0.2% of bismuth(III) nitrate basic hexahydrate. This powder mixture was homogenized and calcined in a tubular furnace at 1200 degrees C, applying different heating rates: 1, 30, 40, and 60 degrees C/min. The yellow color was attributed to the presence of -Bi2O3, *-Bi2MoO6, and Bi2Ti2O7 phases. The powder particle size proved suitable for using the material as an inorganic pigment for polymers. The technological application of the pigment was tested in high-density polyethylene.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore