40 research outputs found

    Site de la station sismologique CAMF du RLBP à la pointe Pen-Hir près de Camaret-sur-Mer (Finistère)

    No full text
    Dans le cadre de l’intégration aux dispositions européens EPOS, Résif s'est transformé en octobre 2023 en Epos-France, une nouvelle infrastructure de recherche aux contours thématiques plus larges et en accord avec ceux de sa grande sœur européenne.Site of the seismological station CAMF in the blockhouse 638 at the Pen-Hir point near Camaret-sur-Mer (Finistère). This station is part of the Permanent Broadband Network, a specific action of Résif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the Earth. Résif is based on high technology observation networks, composed of seismological, geodesic and gravimetric instruments deployed in a dense manner throughout France. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. Résif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.Site de la station sismologique CAMF dans le blockhaus 638 à la pointe Pen-Hir près de Camaret-sur-Mer (Finistère). Cette station fait partie du Réseau Large Bande Permanent (RLPB), action spécifique de Résif, une infrastructure de recherche nationale dédiée à l’observation et la compréhension de la structure et de la dynamique Terre interne. Résif se base sur des réseaux d’observation de haut niveau technologique, composés d’instruments sismologiques, géodésiques et gravimétriques déployés de manière dense sur tout le territoire français. Les données recueillies permettent d’étudier avec une haute résolution spatio-temporelle la déformation du sol, les structures superficielles et profondes, la sismicité à l’échelle locale et globale et les aléas naturels, et plus particulièrement sismiques, sur le territoire français. Résif s’intègre aux dispositifs européens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intérieur de la Terre dans sa globalité et d’étudier de nombreux phénomènes naturels

    Seismic structure of the Lesser Antilles subduction zone : relevance for the extent of the seismogenic zone

    No full text
    The Lesser Antilles is a case study of a very slow subduction (~2 cm/yr) of an old oceanic lithosphere (~84-100 Ma). The region presents a relatively low seismic activity, especially along the interplate contact, and the seismic hazard associated with a possible mega-thrust earthquake is still poorly known. This PhD thesis is a first step toward assessing the ability of the Lesser Antilles subduction zone to produce such a large subduction event. To do so, it aims at constraining the downdip width of the interplate's seismogenic zone. The lack of coverage of permanent seismological stations is a major limitation in the exploration of the Lesser Antilles subduction zone. It is due to the presence of only small aligned islands at far distances from the potentially seismogenic interplate area. Several oceanographic cruises were therefore planned that notably allowed the repeated deployment of ocean bottom seismometers; some of them being left for a few months of background seismicity recording. This thesis specifically focuses on two sets of wide-angle seismic data acquired offshore the Dominica and Martinique islands. From their analysis 3D and 2D tomographic models were produced respectively over the forearc region and across the whole subduction complex. These models constrain the plates' seismic structure as well as their geometry. They allow the discussion of how the imaged structures affect the subduction processes and give a first estimation of the downdip width of the seimogenic zone, defined as the segment of the interplate between the backstop and the upper plate's Moho. The joint interpretation of seismic models and earthquake localizations then refine this first assessment. Epicenter distribution from height months of seismic recording shows indeed that seismicity concentrates within the inner forearc region. The strong velocity gradient that characterize its basement suggests it is denser and more rigid than the more deformable outer forearc basement. The updip limit of the seismogenic zone could then lie arcward of the backstop at the contact of the interplate and the seaward end of the inner forearc crust. At depth, interplate earthquake mechanisms are observed between 35 and 45 km depth and interpreted to have occurred at the downdip limit of the seismogenic zone. The latter could reach a depth over 10\,km deeper than the contact of the upper plate's Moho with the interplate, and therefore lie within the mantle wedge. All together, these results imply a large downdip width of the seismogenic zone (~70 km) offshore the Dominica and Martinique islands. Further work is, however, needed in order to fully comprehend the ability of the Lesser Antilles subduction zone to produce a possible mega-thrust earthquake. This would necessitate the evaluation of seismic coupling at the interplate contact and the possible segmentation of the seismogenic zone, for instance, due to the subduction of oceanic ridges.Les Petites Antilles présentent un contexte géodynamique caractérisé par la subduction à très faible vitesse (~2 cm/an) d'une lithosphère océanique âgée (~84-100 Ma). L'activité sismique y est relativement faible, notamment à l'interplaque, où l'aléa sismique lié à un éventuel séisme de méga-chevauchement reste encore mal contraint. Cette thèse se veut être une première étape dans l'évaluation de la capacité de la zone de subduction des Petites Antilles à générer un tel évènement. Dans ce but, ces travaux tentent d'appréhender l'extension en profondeur du domaine sismogène de l'interplaque. Le manque de couverture des stations sismologiques permanentes est un inconvénient majeur dans l'exploration des Petites Antilles. Il s'explique en raison du peu de terres émergées et de leur éloignement de la zone potentiellement sismogène de l’interplaque. La région a donc fait l'objet de plusieurs campagnes océanographiques qui ont permis, notamment, le déploiement de sismomètres fond de mer (OBS); certains instruments étant restés immergés plusieurs mois afin de procéder à une écoute de la sismicité. Les travaux réalisés au cours de cette thèse se sont focalisés sur deux jeux de données de sismique grand-angle acquis au large des îles de la Dominique et de la Martinique. Leur analyse a permis la construction de modèles tomographiques 3D et 2D respectivement à l'échelle de l'avant-arc et de l'ensemble de la subduction. Ces modèles renseignent sur la structure sismique des plaques en convergence ainsi que sur leur géométrie. Ils permettent de discuter le rôle de la structure dans le fonctionnement de la subduction et d’obtenir une première estimation de l'extension en profondeur de la zone sismogène en considérant la portion de l'interplaque comprise entre le butoir et le Moho de la plaque supérieure. Dans un second temps, l'interprétation conjointe des modèles tomographiques et des localisations des séismes locaux a permis d'affiner cette estimation. Huit mois d'enregistrement de la sismicité montrent en effet une concentration des épicentres dans la région interne de l’avant-arc. Celle-ci présente un socle épais, à fort gradient de vitesse interprété comme plus dense et rigide que le socle de la région externe de l'avant-arc, plus déformable. La limite amont de la zone sismogène pourrait donc se situer en retrait de la position du butoir au contact de l'interplaque et de la limite entre ces deux zones de l'avant-arc. En profondeur, des mécanismes interplaques sont observés entre 35 et 45 km et interprétés comme des marqueurs de la limite aval de la zone sismogène. Cette dernière pourrait donc atteindre une profondeur jusqu'à 10 km supérieure à la limite précédemment évoquée et se trouver, par conséquent, au contact du manteau lithosphérique. L'ensemble de ces résultats suggèrent une extension en profondeur de la zone sismogène (i.e une largeur) de près de 70 km face aux îles de la Dominique et de la Martinique. Ces travaux doivent cependant être poursuivis afin d’évaluer pleinement la capacité de la zone de subduction des Petites Antilles à générer un éventuel séisme de méga-chevauchement. Le taux de couplage à l'interplaque doit être précisé ainsi que sa possible segmentation en lien, par exemple, avec à l'entrée en subduction des rides océaniques

    Site de la station sismologique CAMF du RLBP à la pointe Pen-Hir près de Camaret-sur-Mer (Finistère)

    No full text
    Dans le cadre de l’intégration aux dispositions européens EPOS, Résif s'est transformé en octobre 2023 en Epos-France, une nouvelle infrastructure de recherche aux contours thématiques plus larges et en accord avec ceux de sa grande sœur européenne.Site of the seismological station CAMF in the blockhouse 638 at the Pen-Hir point near Camaret-sur-Mer (Finistère). This station is part of the Permanent Broadband Network, a specific action of Résif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the Earth. Résif is based on high technology observation networks, composed of seismological, geodesic and gravimetric instruments deployed in a dense manner throughout France. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. Résif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.Site de la station sismologique CAMF dans le blockhaus 638 à la pointe Pen-Hir près de Camaret-sur-Mer (Finistère). Cette station fait partie du Réseau Large Bande Permanent (RLPB), action spécifique de Résif, une infrastructure de recherche nationale dédiée à l’observation et la compréhension de la structure et de la dynamique Terre interne. Résif se base sur des réseaux d’observation de haut niveau technologique, composés d’instruments sismologiques, géodésiques et gravimétriques déployés de manière dense sur tout le territoire français. Les données recueillies permettent d’étudier avec une haute résolution spatio-temporelle la déformation du sol, les structures superficielles et profondes, la sismicité à l’échelle locale et globale et les aléas naturels, et plus particulièrement sismiques, sur le territoire français. Résif s’intègre aux dispositifs européens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intérieur de la Terre dans sa globalité et d’étudier de nombreux phénomènes naturels

    Joint inversion of receiver functions and surface wave dispersion in the Reconcavo-Tucano basin of NE Brazil: implications for basin formation

    No full text
    The crustal structure of the Reconcavo-Tucano basin, an aborted rift system that developed in NE Brazil during extension related to the opening of the South Atlantic Ocean, has been investigated through local constraints from receiver functions developed at 18 seismic stations in the region. Gravity modelling has proved unable to unequivocally localize crustal thinning under the basin depocentre and, together with a general lack of sediments from a putative thermal sag phase, this has led to a range of basin formation models invoking either pure or simple shear or a combination of both. In particular, the 'flexural cantilever' model has assumed simple shear extension in the upper crust and pure shear extension in the lower crust and mantle, enabling local erosion of the rift flanks after footwall uplift and regional erosion of the thermal sag phase after magmatic underplate of the basin's crust. Our results reveal that the crust is over 40 km thick beneath the Tucano and Reconcavo basins and that it contains a thick (5-8 km) layer of high velocity (Vs > 4.0 km s(-1)) material below similar to 35 km depth. These observations contrast with structure immediately West (Sao Francisco Craton) and East (Borborema Province) of the basin, for which crustal thicknesses average 42 and 36 km, respectively, lower crustal velocities are below 4.0 km s(-1), and local instances of crust as thin as 33.5 km are observed. We propose, in agreement with the 'flexural cantilever' model, that the fast velocity layer making the basin's lowermost crust resulted from mafic underplating after stretching and thinning during the syn-rift phase, restoring crustal thickness to pre-rift values (or larger) and providing the necessary buoyancy to trigger regional uplift. Moreover, although not pervasive, instances of thin crust along the footwall could be related to rift flank erosion. We thus conclude that, regardless of the mode of extension in the upper crust, our results favour models of basin formation invoking extension of the lower crust by pure shear

    Crustal seismic structure and anisotropy of Madagascar and southeastern Africa using receiver function harmonics: interplay of inherited local heterogeneities and current regional stress

    No full text
    This study investigates the seismic structure and anisotropy in the crust beneath Madagascar and south-eastern Africa, using receiver functions. The understanding of seismic anisotropy is essential for imaging past and present deformation in the lithosphere-asthenosphere system. In the upper mantle, seismic anisotropy mainly results from the orientation of olivine, which deforms under tectonic (fossil anisotropy) or flow processes (in the asthenosphere). In the crust, the crystallographic alignment of amphiboles, feldspars(plagioclase) or micas or the alignment of heterogeneities such as fractures, add to a complex geometry, which results in challenges to understanding the Earth's shallow structure. The decomposition of receiver functions into back-azimuth harmonics allows to characterize orientations of lithospheric structure responsible for azimuthally-varying seismic signals, such as a dipping isotropic velocity contrasts or layers of azimuthal seismic anisotropy. By analysing receiver function harmonics from records of 48 permanent or temporary stations this study reveals significant azimuthally-varying signals within the upper crust of Madagascar and south-eastern Africa. At 30 stations crustal anisotropy dominates the harmonics while the signature of a dipping isotropic contrast is dominant at the remaining 18 stations. However, all stations’ back-azimuth harmonics show complex signals involving both dipping isotropic and shallow anisotropic contrasts or more than one source of anisotropy at shallow depth. Our calculated orientations for the crust are therefore interpreted as reflecting either the average or the interplay of several sources of azimuthally-varying signals depending of their strength. However, comparing information between stations allows us to draw the same conclusions regionally: in both southern Africa and Madagascar our measurements reflect the interplay between local, inherited structural heterogeneities and crustal seismic anisotropy generated by the current extensional stress field imposed by the southward propagation of the East-African Rift System. A final comparison of our crustal orientations with SKS orientations attributed to mantle deformation further probes the interplay of crustal and mantle anisotropy on SKS measurements
    corecore