10 research outputs found

    Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Nature-Derived Polymers

    Get PDF
    Nanofibrous scaffolds belong to the most suitable materials for tissue engineering, because they mimic the fibrous component of the natural extracellular matrix. This chapter is focused on the application of nanofibers in skin tissue engineering and wound healing, because the skin is the largest and vitally important organ in the human body. Nanofibrous meshes can serve as substrates for adhesion, growth and differentiation of skin and stem cells, and also as an antimicrobial and moisture-retaining barrier. These meshes have been prepared from a wide range of synthetic and nature-derived polymers. This chapter is focused on the use of nature-derived polymers. These polymers have good or limited degradability in the human tissues, which depends on their origin and on the presence of appropriate enzymes in the human tissues. Non-degradable and less-degradable polymers are usually produced in bacteria, fungi, algae, plants or insects, and include, for example, cellulose, dextran, pullulan, alginate, pectin and silk fibroin. Well-degradable polymers are usually components of the extracellular matrix in the human body or at least in other vertebrates, and include collagen, elastin, keratin and hyaluronic acid, although some polymers produced by non-vertebrate organisms, such as chitosan or poly(3-hydroxybutyrate-co-3-hydroxyvalerate), are also degradable in the human body

    Analysis and three-dimensional visualization of collagen in artificial scaffolds using nonlinear microscopy techniques

    Get PDF
    Extracellularly distributed collagen and chondro- cytes seeded in gelatine and poly-e-caprolactone scaffolds are visualized by two-photon excitation microscopy (TPEM) and second-harmonic generation (SHG) imaging in both for- ward and backward nondescanned modes. Joint application of TPEM and SHG imaging in combination with stereolog- ical measurements of collagen enables us not only to take high-resolution 3-D images, but also to quantitatively an- alyze the collagen volume and a spatial arrangement of cell-collagen-scaffold systems, which was previously im- possible. This novel approach represents a powerful tool for the analysis of collagen-containing scaffolds with applica- tions in cartilage tissue engineering. C 2010 Society of Photo-Optica

    Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers

    Get PDF
    Nanofibrous scaffolds are popular materials in all areas of tissue engineering, because they mimic the fibrous component of the natural extracellular matrix. In this chapter, we focused on the application of nanofibers in skin tissue engineering and wound healing, because the skin is an organ with several vitally important functions, particularly barrier, thermoregulatory, and sensory functions. Nanofibrous meshes not only serve as carriers for skin cells but also can prevent the penetration of microbes into wounds and can keep appropriate moisture in the damaged skin. The nanofibrous meshes have been prepared from a wide range of synthetic and nature-derived polymers. This review is concentrated on synthetic non-degradable and degradable polymers, which have been explored for skin tissue engineering and wound healing. These synthetic polymers were often combined with natural polymers of the protein or polysaccharide nature, which improved their attractiveness for cell colonization. The nanofibrous scaffolds can also be loaded with various bioactive molecules, such as growth factors, hormones, vitamins, antioxidants, antimicrobial, and antitumor agents. In advanced tissue engineering approaches, the cells on the nanofibrous scaffolds are cultured in dynamic bioreactors enabling appropriate mechanical stimulation of cells and at air-liquid interface. This chapter summarizes recent results achieved in the field of nanofiber-based skin tissue engineering, including results of our research group

    Polymeric nanofibers for medical applications: A real disco

    No full text

    Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study

    Get PDF
    Crystalline properties of semicrystalline polymers are very important parameters that can influence the application area. The internal structure, like the mentioned crystalline properties, of polymers can be influenced by the production technology itself and by changing technology parameters. The present work is devoted to testing of electrospun and centrifugal spun fibrous and nanofibrous materials and compare them to foils and granules made from the same raw polymer. The test setup reveals the structural differences caused by the production technology. Effects of average molecular weight are also exhibited. The applied biodegradable and biocompatible polymer is polycaprolactone (PCL) as it is a widespread material for medical purposes. The crystallinity of PCL has significant effect on rate of degradation that is an important parameter for a biodegradable material and determines the applicability. The results of differential scanning calorimetry (DSC) showed that, at the degree of crystallinity, there is a minor difference between the electrospun and centrifugal spun fibrous materials. However, the significant influence of polymer molecular weight was exhibited. The morphology of the fibrous materials, represented by fiber diameter, also did not demonstrate any connection to final measured crystallinity degree of the tested materials

    The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts

    No full text
    Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA–PL nanomats. The bioactivity of the PVA–PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA–PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA–PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA–PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA–PL nanomats on the three cell types involved in the wound healing process, and established PVA–PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments

    The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System

    No full text
    Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes

    The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System

    No full text
    Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes

    Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

    No full text
    Abstract Nanotechnologies allow the production of yarns containing nanofibres for use in composites, membranes and biomedical materials. Composite yarns with a conventional thread core for mechanical strength and a nanofibrous envelope for functionality, e.g. biological, catalytic, have many advantages. Until now, the production of such yarns has been technologically difficult. Here, we show an approach to composite yarn production whereby a plume of nanofibers generated by high throughput AC needleless and collectorless electrospinning is wound around a classic thread. In the resulting yarn, nanofibres can form up to 80% of its weight. Our yarn production speed was 10 m/min; testing showed this can be increased to 60 m/min. After the yarn was embedded into knitwear, scanning electron microscope images revealed an intact nanofibrous envelope of the composite yarn. Our results indicate that this production method could lead to the widespread production and use of composite nanofibrous yarns on an industrial scale

    Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternating-current electrospinning for suture applications

    No full text
    Fabrication of strong antibacterial composite nanofibrous yarns (CNYs) for suture applications by using common direct current electrospinning has been technologically challenging. In this work, we have demonstrated a more straightforward and facile approach to fabricate chlorhexidine (CHX)-containing antibacterial nanofibrous sheaths wounded around a polyamide core yarn using a novel collectorless alternating-current electrospinning approach. Scanning electron microscopy results showed that the nanofibrous envelope was completely wrapped around the core yarn for both polymers, polyurethane, and polyamide 6 (PA6), used in this study. High-performance liquid chromatography after dissolving of the CNYs confirmed the presence of CHX in the yarns, while X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that the amount is relatively low. The tensile properties of all the CNYs were better than of the core yarns and the CHX addition resulted in a lower envelope linear density and envelope adhesion force. Thermal gravimetric analysis showed that all CNYs are thermally stable within the temperature range of interest. Cytocompatibility tests with 3T3-SA mouse fibroblast cells and antibacterial evaluations with Escherichia coli and Staphylococcus aureus showed that the CHX-containing PA6-based CNYs are biocompatible and have antibacterial properties, suggesting that these yarns can be used as functional and mechanically performant sutures
    corecore