4,714 research outputs found

    Topology of Luminous Red Galaxies from the Sloan Digital Sky Survey

    Full text link
    We present measurements of the genus topology of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Data Release 7 catalog, with unprecedented statistical significance. To estimate the uncertainties in the measured genus, we construct 81 mock SDSS LRG surveys along the past light cone from the Horizon Run 3, one of the largest N-body simulations to date that evolved 7210^3 particles in a 10815 Mpc/h size box. After carefully modeling and removing all known systematic effects due to finite pixel size, survey boundary, radial and angular selection functions, shot noise and galaxy biasing, we find the observed genus amplitude to reach 272 at 22 Mpc/h smoothing scale with an uncertainty of 4.2%; the estimated error fully incorporates cosmic variance. This is the most accurate constraint of the genus amplitude to date, which significantly improves on our previous results. In particular, the shape of the genus curve agrees very well with the mean topology of the SDSS LRG mock surveys in the LCDM universe. However, comparison with simulations also shows small deviations of the observed genus curve from the theoretical expectation for Gaussian initial conditions. While these discrepancies are mainly driven by known systematic effects such as those of shot noise and redshift-space distortions, they do contain important cosmological information on the physical effects connected with galaxy formation, gravitational evolution and primordial non-Gaussianity. We address here the key role played by systematics on the genus curve, and show how to accurately correct for their effects to recover the topology of the underlying matter. In a forthcoming paper, we provide an interpretation of those deviations in the context of the local model of non-Gaussianity.Comment: 23 pages, 18 figures. APJ Supplement Series 201

    Theory of stripes in quasi two dimensional rare-earth tritellurides

    Full text link
    Even though the rare-earth tritellurides are tetragonal materials with a quasi two dimensional (2D) band structure, they have a "hidden" 1D character. The resultant near-perfect nesting of the Fermi surface leads to the formation of a charge density wave (CDW) state. We show that for this band structure, there are two possible ordered phases: A bidirectional "checkerboard" state would occur if the CDW transition temperature were sufficiently low, whereas a unidirectional "striped" state, consistent with what is observed in experiment, is favored when the transition temperature is higher. This result may also give some insight into why, in more strongly correlated systems, such as the cuprates and nickelates, the observed charge ordered states are generally stripes as opposed to checkerboards.Comment: Added contents and references, changed title and figures. Accepted to PR

    Social Transmission of Fear in Rats: The Role of 22-kHz Ultrasonic Distress Vocalization

    Get PDF
    Background: Social alarm calls alert animals to potential danger and thereby promote group survival. Adult laboratory rats in distress emit 22-kHz ultrasonic vocalization (USV) calls, but the question of whether these USV calls directly elicit defensive behavior in conspecifics is unresolved. Methodology/Principal Findings: The present study investigated, in pair-housed male rats, whether and how the conditioned fear-induced 22-kHz USVs emitted by the ‘sender ’ animal affect the behavior of its partner, the ‘receiver ’ animal, when both are placed together in a novel chamber. The sender rats ’ conditioned fear responses evoked significant freezing (an overt evidence of fear) in receiver rats that had previously experienced an aversive event but not in naïve receiver rats. Permanent lesions and reversible inactivations of the medial geniculate nucleus (MGN) of the thalamus effectively blocked the receivers ’ freeezing response to the senders ’ conditioned fear responses, and this occurred in absence of lesions/ inactivations impeding the receiver animals ’ ability to freeze and emit 22-kHz USVs to the aversive event per se. Conclusions/Significance: These results—that prior experience of fear and intact auditory system are required for receiver rats to respond to their conspecifics ’ conditioned fear responses—indicate that the 22-kHz USV is the main factor for socia

    Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate

    Full text link
    We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their spatial components separately, we identified 2\pi topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors

    Measurement of the Background Activities of a 100Mo-enriched powder sample for AMoRE crystal material using a single high purity germanium detector

    Full text link
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) searches for neutrino-less double-beta (0{\nu}\b{eta}\b{eta}) decay of 100Mo in enriched molybdate crystals. The AMoRE crystals must have low levels of radioactive contamination to achieve low background signals with energies near the Q-value of the 100Mo 0{\nu}\b{eta}\b{eta} decay. To produce low-activity crystals, radioactive contaminants in the raw materials used to form the crystals must be controlled and quantified. 100EnrMoO3 powder, which is enriched in the 100Mo isotope, is of particular interest as it is the source of 100Mo in the crystals. A high-purity germanium detector having 100% relative efficiency, named CC1, is being operated in the Yangyang underground laboratory. Using CC1, we collected a gamma spectrum from a 1.6-kg 100EnrMoO3 powder sample enriched to 96.4% in 100Mo. Activities were analyzed for the isotopes 228Ac, 228Th, 226Ra, and 40K. They are long-lived naturally occurring isotopes that can produce background signals in the region of interest for AMoRE. Activities of both 228Ac and 228Th were < 1.0 mBq/kg at 90% confidence level (C.L.). The activity of 226Ra was measured to be 5.1 \pm 0.4 (stat) \pm 2.2 (syst) mBq/kg. The 40K activity was found as < 16.4 mBq/kg at 90% C.L.Comment: 20 pages, 6 figures, 5 table

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at ∣Q0∣=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state
    • …
    corecore