12 research outputs found
Eyes as Gateways for Environmental Light to the Substantia Nigra: Relevance in Parkinson’s Disease
Recent data indicates that prolonged bright light exposure of rats induces production of neuromelanin and reduction of tyrosine hydroxylase positive neurons in the substantia nigra. This effect was the result of direct light reaching the substantia nigra and not due to alteration of circadian rhythms. Here, we measured the spectrum of light reaching the substantia nigra in rats and analysed the pathway that light may take to reach this deep brain structure in humans. Wavelength range and light intensity, emitted from a fluorescent tube, were measured, using a stereotaxically implanted optical fibre in the rat mesencephalon. The hypothetical path of environmental light from the eye to the substantia nigra in humans was investigated by computed tomography and magnetic resonance imaging. Light with wavelengths greater than 600 nm reached the rat substantia nigra, with a peak at 709 nm. Eyes appear to be the gateway for light to the mesencephalon since covering the eyes with aluminum foil reduced light intensity by half. Using computed tomography and magnetic resonance imaging of a human head, we identified the eye and the superior orbital fissure as possible gateways for environmental light to reach the mesencephalon
Contribution of different somatosensory afferent input to subcortical somatosensory evoked potentials in humans
objectives: to investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimula-tion of either muscle or cutaneous afferents. methods: SEPs were recorded in 6 patients suffering from parkinson's disease (PD) who underwent elec-trode implantation in the pedunculopontine (PPTg) nucleus area. we compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. also the high-frequency oscillations (HFOs) were analysed. results: after median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). on the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stim-ulation of all modalities by the PPTg electrode contacts. conclusions: stimulus processing within the cuneate nucleus depends on modality, since only the cuta-neous input activates the complex intranuclear network possibly generating the scalp N18 potential. significance: our results shed light on the subcortical processing of the somatosensory input of different modalities. (c) 2021 International federation of clinical neurophysiolog
High Cervical Spinal Cord Stimulation: A One Year Follow-Up Study on Motor and Non-Motor Functions in Parkinson’s Disease
Background: The present study investigated the effectiveness of stimulation applied at cervical levels on pain and Parkinson’s disease (PD) symptoms using either tonic or burst stimulation mode. Methods: Tonic high cervical spinal cord stimulation (T-HCSCS) was applied on six PD patients suffering from low back pain and failed back surgery syndrome, while burst HCSCS (B-HCSCS) was applied in twelve PD patients to treat primarily motor deficits. Stimulation was applied percutaneously with quadripolar or octapolar electrodes. Clinical evaluation was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hoehn and Yahr (H&Y) scale. Pain was evaluated by a visual analog scale. Evaluations of gait and of performance in a cognitive motor task were performed in some patients subjected to B-HCSCS. One patient who also suffered from severe autonomic cardiovascular dysfunction was investigated to evaluate the effectiveness of B-HCSCS on autonomic functions. Results: B-HCSCS was more effective and had more consistent effects than T-HCSCS in reducing pain. In addition, B-HCSCS improved UPDRS scores, including motor sub-items and tremor and H&Y score. Motor benefits appeared quickly after the beginning of B-HCSCS, in contrast to long latency improvements induced by T-HCSCS. A slight decrease of effectiveness was observed 12 months after implantation. B-HCSCS also improved gait and ability of patients to correctly perform a cognitive–motor task requiring inhibition of a prepared movement. Finally, B-HCSCS ameliorated autonomic control in the investigated patient. Conclusions: The results support a better usefulness of B-HCSCS compared to T-HCSCS in controlling pain and specific aspects of PD motor and non-motor deficits for at least one year
Comparison between tail suspension swing test and standard rotation test in revealing early motor behavioral changes and neurodegeneration in 6-OHDA hemiparkinsonian rats
The unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD) is one of the most commonly used in rodents. The anatomical, metabolic, and behavioral changes that occur after severe and stable 6-OHDA lesions have been extensively studied. Here, we investigated whether early motor behavioral deficits can be observed in the first week after the injection of 6-OHDA into the right substantia nigra pars compacta (SNc), and if they were indicative of the severity of the dopaminergic (DAergic) lesion in the SNc and the striatum at different time-points (day 1, 3, 5, 7, 14, 21). With this aim, we used our newly modified tail suspension swing test (TSST), the standard rotation test (RT), and immunohistochemical staining for tyrosine hydroxylase (TH). The TSST, but not the standard RT, revealed a spontaneous motor bias for the 6-OHDA-lesioned rats from the day 1 post-surgery. Both tests detected the motor asymmetry induced by (single and repeated) apomorphine (APO) challenges that correlated, in the first week, with the DAergic neuronal degeneration. The described TSST is fast and easy to perform, and in the drug-free condition is useful for the functional assessment of early motor asymmetry appearing after the 6-OHDA-lesion in the SNc, without the confounding effect of APO challenges.peer-reviewe
Effects of unilateral pedunculopontine stimulation on electromyographic activation patterns during gait in individual patients with Parkinson's diseas
In Parkinson's disease (PD), the effects of deep brain stimulation of the pedunculopontine nucleus (PPTg-DBS) on gait has been object of international debate. Some evidence demonstrated that, in the late swing-early stance phase of gait cycle, a reduced surface electromyographic activation (sEMG) of tibialis anterior (TA) is linked to the striatal dopamine deficiency in PD patients. In the present study we report preliminary results on the effect of PPTg-DBS on electromyographic patterns during gait in individual PD patients. To evaluate the sEMG amplitude of TA, the root mean square (RMS) of the TA burst in late swing-early stance phase (RMS-A) was normalized as a percent of the RMS of the TA burst in late stance-early swing (RMS-B). We studied three male patients in the following conditions: on PPTg-DBS/on L: -dopa, on PPTg-DBS/off L: -dopa, off PPTg-DBS/on L: -dopa, off PPTg-DBS/off L: -dopa. For each assessment the UPDRS III was filled in. We observed no difference between on PPTg-DBS/off L: -dopa and off PPTg-DBS/off L: -dopa in UPDRS III scores. In off PPTg-DBS/off L: -dopa, patient A (right implant) showed absence of the right and left RMSA, respectively, in 80% and 83% of gait cycles. Patient B (right implant) showed absence of the right RMS-A in 86% of cycles. RMS-A of the patient C (left implant) was bilaterally normal. In on PPTg- DBS/off L: -dopa, no patient showed reduced RMS-A. Although the very low number of subjects we evaluated, our observations suggest that PPTg plays a role in modulating TA activation pattern during the steady state of gait
Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not
We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710 nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [3H]DA uptake, did not change. Finally, we observed that 710 nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength