43 research outputs found

    On the power of parallel communicating Watson–Crick automata systems

    Get PDF
    AbstractParallel communicating Watson–Crick automata systems were introduced in [E. Czeizler, E. Czeizler, Parallel communicating Watson–Crick automata systems, in: Z. Ésik, Z. FĂŒlöp (Eds.), Proc. Automata and Formal Languages, DobogĂłkƑ, Hungary, 2005, pp. 83–96] as possible models of DNA computations. This combination of Watson–Crick automata and parallel communicating systems comes as a natural extension due to the new developments in DNA manipulation techniques. It is already known, see [D. Kuske, P. Weigel, The Role of the Complementarity Relation in Watson–Crick Automata and Sticker Systems, DLT 2004, Lecture Notes in Computer Science, Vol. 3340, Auckland, New Zealand, 2004, pp. 272–283], that for Watson–Crick finite automata, the complementarity relation plays no active role. However, this is not the case when considering parallel communicating Watson–Crick automata systems. In this paper we prove that non-injective complementarity relations increase the accepting power of these systems. We also prove that although Watson–Crick automata are equivalent to two-head finite automata, this equivalence is not preserved when comparing parallel communicating Watson–Crick automata systems and multi-head finite automata

    On the size of the inverse neighborhoods for one-dimensional reversible cellular automata

    Get PDF
    AbstractIn this paper we investigate the possible neighborhood size of the inverse automaton of some types of one-dimensional reversible cellular automata. Considering only the case when the local function is a size two map, we give a quadratic upper bound for the neighborhood size of the inverse automaton. We show that this bound can be lowered in some particular cases, and give an algorithm for computing these better bounds

    A tight linear bound on the synchronization delay of bijective automata

    Get PDF
    AbstractReversible cellular automata (RCA) are models of massively parallel computation that preserve information. We generalize these systems by introducing the class of ωωbijective finite automata. It consists of those finite automata where for any bi-infinite word there exists a unique path labelled by that word. These systems are strictly included in the class of local automata. Although the synchronization delay of an n-state local automaton is known to be Θ(n2) in the worst case, we prove that in the case of ωωbijective finite automata the synchronization delay is at most n−1. Based on this we prove that for a one-dimensional n-state RCA where the neighborhood consists of m consecutive cells, the neighbourhood of the inverse automaton consists of at most nm−1−(m−1) cells. Similar bounds are obtained also in [E. Czeizler, J. Kari, A tight linear bound on the neighborhood of inverse cellular automata, in: Proceedings of ICALP 2005, in: LNCS, vol. 3580, 2005, pp. 410–420] but here the result comes as a direct consequence of the more general result. We also construct examples of RCA with large inverse neighbourhoods proving that the upper bounds provided here are the best possible in the case m=2

    Quantitative Model Refinement as a Solution to the Combinatorial Size Explosion of Biomodels

    Get PDF
    AbstractBuilding a large system through a systematic, step-by-step refinement of an initial abstract specification is a well established technique in software engineering, not yet much explored in systems biology. In the case of systems biology, one starts from an abstract, high-level model of a biological system and aims to add more and more details about its reactants and/or reactions, through a number of consecutive refinement steps. The refinement should be done in a quantitatively correct way, so that (some of) the numerical properties of the model (such as the experimental fit and validation) are preserved. In this study, we focus on the data-refinement mechanism where the aim is to increase the level of details of some of the reactants of a given model. That is, we analyse the case when a model is refined by substituting a given species by several types of subspecies. We show in this paper how the refined model can be systematically obtained from the original one. As a case study for this methodology we choose a recently introduced model for the eukaryotic heat shock response, [I. Petre, A. Mizera, C. L. Hyder, A. Meinander, A. Mikhailov, R.I. Morimoto, L. Sistonen, J. E. Eriksson, R.-J. Back, A simple mass-action model for the eukaryotic heat shock response and its mathematical validation, Natural Computing, 10(1), 595–612, 2011.]. We refine this model by including details about the acetylation of the heat shock factors and its influence on the heat shock response. The refined model has a significantly higher number of kinetic parameters and variables. However, we show that our methodology allows us to preserve the experimental fit/validation of the model with minimal computational effort

    An extension of the Lyndon–SchĂŒtzenberger result to pseudoperiodic words

    Get PDF
    AbstractOne of the particularities of information encoded as DNA strands is that a string u contains basically the same information as its Watson–Crick complement, denoted here as Ξ(u). Thus, any expression consisting of repetitions of u and Ξ(u) can be considered in some sense periodic. In this paper, we give a generalization of Lyndon and SchĂŒtzenberger’s classical result about equations of the form ul=vnwm, to cases where both sides involve repetitions of words as well as their complements. Our main results show that, for such extended equations, if lâ©Ÿ5,n,mâ©Ÿ3, then all three words involved can be expressed in terms of a common word t and its complement Ξ(t). Moreover, if lâ©Ÿ5, then n=m=3 is an optimal bound. These results are established based on a complete characterization of all possible overlaps between two expressions that involve only some word u and its complement Ξ(u), which is also obtained in this paper

    Geometrical Tile Design for Complex Neighborhoods

    Get PDF
    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a “tall” von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 × 5 “filled” rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 × (2k + 1) rectangle

    Network controllability solutions for computational drug repurposing using genetic algorithms

    Get PDF
    Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdos-Renyi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches

    NetControl4BioMed: A web-based platform for controllability analysis of protein-protein interaction networks

    Get PDF
    Motivation: There is an increasing amount of data coming from genome-wide studies identifying disease-specific survivability-essential proteins and host factors critical to a cell becoming infected. Targeting such proteins has a strong potential for targeted, precision therapies. Typically however, too few of them are drug targetable. An alternative approach is to influence them through drug targetable proteins upstream of them. Structural target network controllability is a suitable solution to this problem. It aims to discover suitable source nodes (e.g. drug targetable proteins) in a directed interaction network that can control (through a suitable set of input functions) a desired set of targets. Results: We introduce NetControl4BioMed, a free open-source web-based application that allows users to generate or upload directed protein–protein interaction networks and to perform target structural network controllability analyses on them. The analyses can be customized to focus the search on drug targetable source nodes, thus providing drug therapeutic suggestions. The application integrates protein data from HGNC, Ensemble, UniProt, NCBI and InnateDB, directed interaction data from InnateDB, Omnipath and SIGNOR, cell-line data from COLT and DepMap, and drug–target data from DrugBank. Availability and implementation: The application and data are available online at https://netcontrol.combio.org/. The source code is available at https://github.com/Vilksar/NetControl4BioMed under an MIT license.</p
    corecore