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Abstract

Building a large system through a systematic, step-by-step refinement of an initial abstract specification is
a well established technique in software engineering, not yet much explored in systems biology. In the case
of systems biology, one starts from an abstract, high-level model of a biological system and aims to add
more and more details about its reactants and/or reactions, through a number of consecutive refinement
steps. The refinement should be done in a quantitatively correct way, so that (some of) the numerical
properties of the model (such as the experimental fit and validation) are preserved. In this study, we focus
on the data-refinement mechanism where the aim is to increase the level of details of some of the reactants
of a given model. That is, we analyse the case when a model is refined by substituting a given species by
several types of subspecies. We show in this paper how the refined model can be systematically obtained
from the original one. As a case study for this methodology we choose a recently introduced model for the
eukaryotic heat shock response, [19]. We refine this model by including details about the acetylation of the
heat shock factors and its influence on the heat shock response. The refined model has a significantly higher
number of kinetic parameters and variables. However, we show that our methodology allows us to preserve
the experimental fit/validation of the model with minimal computational effort.
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1 Introduction

Extensive experimental and computational effort is invested nowadays in compil-

ing large, system-level models for complex biological systems, including regulatory

networks, signaling pathways, metabolic pathways etc. The first step in developing

such system-level models lies usually in creating an abstraction of the biological

process consisting of a relatively small number of biochemical reactions describing

the main mechanisms of the considered process. The chosen reactions can be ab-

stract representations of some particular subprocess, encapsulating, in fact, many

biochemical reactions from the considered system. A mathematical model is then

associated to the molecular model comprising these chosen reactions. For this, one

chooses an appropriate kinetic law, e.g., mass-action law or Michaelis-Menten kinet-

ics, based on which one can then write the mathematical equations describing the

dynamics of the system. The numerical setup of this mathematical model is either

obtained from the literature, or, using available experimental data, it is derived

through various computational model fit procedures.

Starting from this abstract model, the process of model development proceeds

with a series of iterative steps involving hypothesis generation, experimental design,

experimental analysis and model refinement, [2], [12]. Particularly, the simplifica-

tions and abstractions included in the initial model might be refined later on, in-

cluding more accurate details of the process. One approach for this would be to

simply repeat the whole model development procedure in order to include all the in-

tended changes. However, this can be extremely inefficient since it requires to re-fit

the model, a step which is both time-consuming and computationally-intensive, [3].

Another approach, that seems little investigated so far, is to refine the initial model

step-by-step making sure that the experimental (numerical) model fit is preserved.

In other words, the numerical setup of the refined model should be obtained from

that of the initial model, see [16] for a recent case study regarding self-assembly

models.

In this study, we focus on the model refinement step within the above model de-

velopment cycle. In particular, we analyse the case when the model is adjusted

by refining some of its reactants, i.e., by replacing a given species by some of

its subspecies. This is the case, for instance, when more details about the post-

translational modifications of proteins, e.g., acetylation or phosphorylation, are re-

quired. In such a case, the model is refined by replacing a given protein P with

its variants indicating whether P withstood some post-translational modification or

not, e.g., whether P was acetylated or not. This substitution of species also leads

to a refinement of all the reactions in which protein P was involved. Then, we show

how we can attain the values of the parameters of the refined model from those of

the initial model. Hence, we make sure that we preserve all previously obtained

systemic properties, such as numerical fit of the model.

The paper is organized as follows. First, we present the model refinement proce-

dure consisting in replacing a species with several subspecies while still preserving

the previously obtained model fit with respect to some experimental data. Then,

we illustrate this technique by considering as a case study the regulatory role of

E. Czeizler et al. / Electronic Notes in Theoretical Computer Science 284 (2012) 35–5336



protein acetylation within the eukaryotic heat shock response. In particular, we re-

fine a recent model for the eukaryotic heat shock response, see [19], by considering

also the acetylation of some particular proteins.

2 Quantitative model refinement

There are several types of refinement that can be applied on a given model. For

instance, one could focus on the data of a given model and refine it by replacing

one (or more) of its species with a number of subspecies. This way, the refined

model would illustrate various differences in the behaviour of those subspecies. We

call this data refinement. Another type of refinement, that we call process refine-

ment, concerns the model reactions. That is, the model is refined by replacing a

generic reaction describing a particular process with several reactions detailing on

the intermediary steps of that process.

The problem of formal refinement has been considerably documented in the

field of software engineering, particularly related to the concurrent computing

paradigm [24], [1]. It aroused from the need to prove (in a formal/mathematical

way) that the final implementation of a system corresponds to its original specifica-

tions. In systems biology, the problem of quantitative model refinement has already

been investigated within the framework of rule-based modelling, see [17], [10], [5].

This approach is not concerned with the data refinement we have previously de-

fined, since this type of refinement is already built in the system through agent

resolution [10]. However, the main consideration in this respect is rule refinement,

a method to refine set rules so that the dynamic behaviour of the model is pre-

served [17]. Rule based modelling allows the construction of more detailed models

through resolution augmentation in the space of agents and rules, comprising model

variants in more finely-grained hierarchical structures [10]. This type of framework

enables writing feasible models and operates on their perturbation spaces in order

to evaluate perturbation effects over a particular model [5].

However, independently of the type of refinement chosen, the refinement process

should preserve the systemic properties of the original model, e.g., the model fit. We

present here an approach for data model refinement which preserves the previously

obtained numerical properties of the model.

Consider that a model M consists of a list of m species Σ = {A1, A2, ..., Am}
and n reactions ri, 1 ≤ i ≤ n, of the form:

ri : Si,1A1 + Si,2A2 + ...+ Si,mAm
ki−→ S′

i,1A1 + S′
i,2A2 + ...+ S′

i,mAm,

where Si,1, ..., Si,m, S′
i,1, ..., S

′
i,m ≥ 0 are some integers called the stoichiometric co-

efficients of ri and ki ≥ 0 is the kinetic rate constant of ri. A number of differ-

ent mathematical formulations can be associated to model M , in terms of con-

tinuous or discrete variables, deterministic or non-deterministic evolution etc. We

choose in this study a continuous, mass-action formulation, where to each variable

Ai, 1 ≤ i ≤ n, we associate a time-dependent function [Ai] : R+ → R+ describing

its concentration level. In particular, for each species Ai, we denote by [Ai](t) its
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concentration at time t. The dynamics of the system is then described through a

system of differential equations [13] in which, for each reaction, we assumed the

principle of mass action, originally introduced in [8], [9].

In particular, for model M we obtain the following system of ODE:

d[Aj ]

dt
= −

n∑
i=1

(kiSi,j

m∏
k=1

[Ak]
Si,k) +

n∑
i=1

(kiS
′
i,j

m∏
k=1

[Ak]
Si,k), 1 ≤ j ≤ m. (1)

The next lemma tackles the existence and uniqueness of solutions of systems of

ODEs derived following the mass action law.

Lemma 2.1 [11] Given a molecular model and its associated system of ODEs

derived based on the principle of mass action, for any fixed initial condition, there

exists an interval of the form [0, x), x ∈ R+ ∪{+∞} and a solution φ such that any

other solution is a restriction of φ.

Assume that the model M is to be detailed by distinguishing several subspecies

of A1. Such subspecies may be several different forms of A1, several biochemical

configurations of A1 (e.g., caused by some post-translational modifications) etc.

Each of these subspecies may participate in all reactions, where A1 participated (in

model M), possibly with different kinetics. If A1 is to be replaced with subspecies

B1, . . . , Bl, then we derive a new model MR, in which the set of species is denoted

through the new variables {A′
2, A

′
3, ..., A

′
m} ∪ {B1, ..., Bl}, for some l ≥ 2. Variables

A′
i, 2 ≤ i ≤ m, correspond to species Ai from model M , whereas B1, ..., Bl are to

replace species A1 in model MR. Moreover, each reaction ri from M is replaced in

MR by reaction r′i of the following type:

r′i : (Ti,1B1 + ...+ Ti,lBl) + Si,2A
′
2 + ...+ Si,mA′

m

k′i−→
(T ′

i,1B1 + ...+ T ′
i,lBl) + S′

i,2A
′
2 + ...+ S′

i,mA′
m,

with k′i its kinetic rate constant, and Ti,1, ..., Ti,l, T
′
i,1, ..., T

′
i,l nonnegative integers

such that Ti,1 + ... + Ti,l = Si,1 and T ′
i,1 + ... + T ′

i,l = S′
i,1. We say now that the

model MR is a data refinement of M on variable A1 if and only if the following two

conditions are satisfied:

[Ai](t) = [A′
i](t), for all 2 ≤ i ≤ m, (2)

[A1](t) = [B1](t) + ...+ [Bl](t), for all t ≥ 0. (3)

The refined model MR has m + l − 1 species, whereas M consists of m species;

thus, MR has a linear-increase in the size of its data set. The number of reactions

replacing in MR the reaction ri of M is given by the number of non-negative integer

solutions of the following system of equations:

Ti,1 + Ti,2 + ...+ Ti,l =Si,1;

T ′
i,1 + T ′

i,2 + ...+ T ′
i,l =S′

i,1;

over the independent unknowns Ti,j , T
′
i,j , 1 ≤ j ≤ l. The number of solutions of the
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first equation is the multinomial coefficient “l multichooses Si,1”, see [6]:

((
l

Si,1

))
=

(
l + Si,1 − 1

Si,1

)
=

(l + Si,1 − 1)!

Si,1!(l − 1)!
.

Since the two equations in the system are independent, the number of solutions

of the system is
((

l
Si,1

))
·
((

l
S′
i,1

))
. This gives the increase in the number of reactions

in the model refinement from M to MR. In terms of kinetic parameters, MR will

have
((

l
Si,1

))
new free parameters, given by the number of possible combinations of

B1, ..., Bl as reactants.

Arguing on the basis of biokinetics, see [18], we may assume that Si,1 ≤ 2: any

reaction with a ternary (or higher) stoichiometric coefficient would be so slow that

its effects may be ignored. In case Si,1 = 1, MR will have
((

l
1

))
= l new kinetic

parameters, i.e., a linear increase in the parameter space. In case Si,1 = 2, MR

will have
((

l
2

))
=l(l+1)/2 new parameters, i.e., a quadratic increase in the parameter

space.

Some of the new kinetic parameters of MR may be known from the literature,

or they can be experimentally measured. For the rest of them, for which no previ-

ous knowledge and no direct kinetic measurements are available, a computational

procedure is needed to calculate them so that (2) and (3) hold. Such a procedure

should focus only on those parameters whose kinetic values are not known.

Re-running parameter estimation procedures when the parameter space wit-

nesses a (potentially) quadratic increase in every step of the refinement is compu-

tationally very expensive. Moreover, such a procedure makes little sense since the

fit of an intermediate model is lost in the next refinement step.

We propose in this paper an approach where we systematically set the values of

the unknown kinetic parameters of the refined model so that relations (2) and (3)

hold. Clearly, some of the potential choices are unreasonable, such as those where

we would set to 0 the kinetic parameters of all reactions involving B2, B3, ..., or Bl;

such a choice would eliminate the idea of refinement and it would only rename all the

variables of M in MR. Instead, we take an approach where the refined subspecies

B1, ..., Bl of species A1 are not distinguishable through the kinetics of the reactions

they participate in. Thus, in the absence of any biological data regarding differences

between some of these reactants, our choice of kinetic parameters aims to make no

numerical distinctions between their reaction kinetics. As a side effect, this leads

to simpler and more elegant mathematical considerations.

Consider next an example of such a data refinement procedure, in which we show

how we can obtain the kinetic rate constants of the refined model depending on the

type of equations included in the original model. We consider the Lotka-Volterra

system, [15], [22], composed of the species A (the prey) and B (the predator), and

the following reactions:

A
k1−→ 2A, A+B

k2−→ 2B, B
k3−→ ∅.

E. Czeizler et al. / Electronic Notes in Theoretical Computer Science 284 (2012) 35–53 39



The set of mass-action based ODEs describing the dynamics of this system are:

d[A]/dt = k1[A]− k2[A][B] d[B]/dt = k2[A][B]− k3[B].

After refining the Lotka-Volterra model on variable A into subspecies A1 and

A2, we obtain the following set of reactions:

A1
r1−→ A1 +A1, A1

r2−→ A1 +A2, A1
r3−→ A2 +A2,

A2
r4−→ A1 +A1, A2

r5−→ A1 +A2, A2
r6−→ A2 +A2,

A1 +B′ r7−→ 2B′, A2 +B′ r8−→ 2B′, B′ r9−→ φ.

This leads to the following system of ODEs describing the dynamics of the

variables A1, A2, and B′:

d[A1]/dt = (r1 − r3)[A1] + (2r4 + r5)[A2]− r7[A1][B
′],

d[A2]/dt = (r2 + 2r3)[A1] + (−r4 + r6)[A2]− r8[A2][B
′],

d[B′]/dt = r7[A1][B
′] + r8[A2][B

′]− r9[B
′].

Thus, d([A1] + [A2])/dt = (r1 − r3 + r2 + 2r3)[A1] + (2r4 + r5 − r4 + r6)[A2]− (r7 +

r8)[A1][B
′]. Consequently, if we choose r1 = r2 = r3 = r4 = r5 = r6 = k1/3,

r7 = r8 = k2 and r9 = k3 then we obtain

d([A1] + [A2])/dt = k1([A1] + [A2])− k2([A1] + [A2])[B
′],

d[B′]/dt = k2([A1] + [A2])[B
′]− k3[B

′],

which is identical to the initial system up to a renaming of variables where [A] is

replaced by [A1] + [A2] and [B] is replaced by [B′]. For any x0 ≥ 0, if we set the

initial values of the variables A1, A2, and B′ such that [A](x0) = [A1](x0)+[A2](x0)

and [B](x0) = [B′](x0), it follows from Lemma 2.1 that there exists an open interval

I including x0 such that [A](t) = [A1](t) + [A2](t) and [B](t) = [B′](t), for all t ∈ I.

That is, the second model is indeed a quantitative refinement of the initial one (on

the interval I).

3 Models

3.1 The eukaryotic heat shock response: a molecular model

The heat shock response in eukaryotes is an evolutionarily conserved mechanism

that controls the cellular response to proteotoxicity originating from environmental

stressors such as elevated temperatures. When subjected to increased tempera-

tures, proteins in the cell tend to misfold and accumulate in large aggregates that

eventually induce cell death. Survival of the cell is promoted by a mechanism that

restores protein homeostatis, i.e. the equilibrium between synthesis, folding and

degradation of proteins.

We describe the molecular model for the heat shock response proposed in [20] as

follows. The key factors within this process are the heat shock proteins (hsp), that
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act as chaperones, assisting the misfolded proteins (mfp) in their refolding process.

The response is regulated by the transactivation of the hsp-encoding genes. The

transcription of the gene is mediated by specific heat shock transcription factors

(hsf). The hsf’s trimerize (hsf3) and subsequently bind to a promoter site of the

hsp-encoding gene, called heat shock element (hse). The trimerization phase of the

heat shock factors is preceded by a dimerization stage resulting in the constitu-

tion of dimers (hsf2). Hsf trimers bind to heat shock elements forming hsf3: hse
complexes. Therefore, protein synthesis is activated and new hsp molecules are ul-

timately formed. When the level of hsp’s is sufficiently elevated, hsp synthesis is

turned off through an ingenious mechanism [19, 20]. Heat shock proteins bind to

the hsf molecules forming hsp: hsf complexes, thus impeding hsf’s to trimerize and

to bind to the heat shock elements. The sequestration of hsf’s can be done in three

different ways: by breaking dimers, trimers, and by unbinding hsf3 from the heat

shock elements combined with the simultaneous breaking of the trimer. However,

an increase in the temperature causes some of the proteins (prot) to misfold, which

drives hsp away from hsf. This in turn quickly turns on the heat shock response

since the heat shock factors are again free and thus able to promote the synthe-

sis of more heat shock proteins. The reactions of the molecular model in [19] are

presented in Table 1.

Table 1
The molecular model for the eukaryotic heat shock response proposed in [19].

2 hsf � hsf2 hsp+ hsf3 → hsp: hsf +2 hsf

hsf + hsf2 � hsf3 hsp+ hsf3: hse→ hsp: hsf +2 hsf + hse

hsf3+ hse � hsf3: hse hsp→ ∅
hsf3: hse→ hsf3: hse+ hsp prot→ mfp

hsp+ hsf � hsp: hsf hsp+mfp � hsp:mfp

hsp+ hsf2 → hsp: hsf + hsf hsp:mfp→ hsp+ prot

3.2 Mathematical model

Associated to the molecular model in Table 1, we consider a mathematical model

formulated in terms of mass-action based ODEs, see [13]. The model was originally

considered in [19]. We include the system of ODEs in Table A.1 and we refer the

reader to [19] for more details.

Both the kinetic rate constants and the initial values of all reactants were esti-

mated in [19], by imposing the following three conditions:

(i) the system is in a steady state if the temperature is 37◦C. This is a natural

consequence of the fact that the model should not exhibit any response in the

absence of the heat shock, i.e., at 37◦C;

(ii) the numerical predictions of the model for [hsf3: hse](t) should agree with the

experimental data from [14], for a temperature of 42◦C;
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(iii) the numerical prediction of the model for [hsp](t) should confirm the data obtained

in [19] through a de-novo fluorescent reporter-based experiment, for a temperature

of 42◦C.

3.3 The role of protein acetylation within the eukaryotic heat shock response

It has been recently shown that the acetylation of the heat shock factors (hsf),
i.e., the transcription factors for the hsp-encoding genes, plays an important role

in regulating the heat shock response [23]. The acetylation process consists in

substituting an acetyl group for a hydrogen atom within a chemical compound.

The reverse process, i.e., the deacetylation, represents the suppression of an acetyl

group from a compound. Protein acetylation can occur at the alpha-amino group of

the amino-terminus (N-terminal acetylation) or on the lysine residues at the epsilon-

amino group (lysine acetylation) [7]. The lysine acetylation in particular is known

to play a significant role in gene regulation by changing the charge of histone tails.

Due to the neutralization of the positive charge of the histones, lysine acetylation

diminishes their DNA binding affinity [4, 21].

3.4 Data refinement of the model

We discuss, in this section, how to extend the heat shock model of [19] to account

for the acetylation of hsf and its influence on the response. For this, we refine all

species and complexes involving hsf to account for two subtypes of hsf: one where

its K80 residue is not acetylated, and one where it is acetylated. Consequently, the

complex hsp: hsf will also be refined to two subtypes, depending on the acetylation

of its hsf component. In the case of hsf2, hsf3 and hsf3: hse, the refinement will be

accomplished by counting how many of the hsf components in that complex (two

in the case of hsf2 and three in the case of hsf3 and hsf3: hse) have their K80 residue

acetylated. Thus, we perform the following data refinements:

hsf → {rhsf, rhsf(1)};
hsf2 → {rhsf2, rhsf2(1), rhsf2(2)};
hsf3 → {rhsf3, rhsf3(1), rhsf3(2), rhsf3(3)};
hsf3: hse→ {rhsf3: rhse, rhsf3(1): rhse, rhsf3(2): rhse, rhsf3(3): rhse};
hsp: hsf → {rhsp: rhsf, rhsp: rhsf(1)}.

These data refinements imply several changes in the list of reactions of our model.

For example, the reaction hsp+ hsf � hsp: hsf is replaced by two reactions :

rhsp+ rhsf � rhsp: rhsf, and rhsp+rhsf(1) � rhsp: rhsf(1). As another example,

reaction 2 hsf � hsf2 is replaced by three reactions, based on the method described

in Section 2:

2 rhsf � rhsf2; rhsf + rhsf(1) � rhsf2
(1); 2rhsf(1) � rhsf2

(2).

Due to space limitations, the complete list of reactions is given in Appendix B. The

refined model consists of 39 reactions, some of which are reversible.
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3.5 Quantitative equivalence of the basic and the refined model

We discuss now the numerical setup of the refined model for the heat shock response

in such a way that the refinement procedure is quantitatively correct as defined in

(2)-(3). The initial values of the refined variables are set so that the following 10

conditions (derived from the data refinement relationships) are satisfied:

[hsf](0) = [rhsf](0) + [rhsf(1)](0);

[hsf2](0) = [rhsf2](0) + [rhsf2
(1)] + [rhsf2

(2)](0);

[hsf3](0) = [rhsf3](0) + [rhsf3
(1)](0) + [rhsf3

(2)](0) + [rhsf3
(3)](0);

[hsp: hsf](0) = [hsp: rhsf](0) + [rhsp: rhsf(1)](0);

[hsf3: hse](0) = [rhsf3: rhse](0) + [rhsf3
(1): rhse](0) + [rhsf3

(2): rhse](0)+

+ [rhsf3
(3): rhse](0);

[hsp](0) = [rhsp](0);

[hsp:mfp](0) = [rhsp: rmfp](0);

[mfp](0) = [rmfp](0);

[prot](0) = [rprot](0);

[hse](0) = [rhse](0).

The system of mass-action based ODEs for the refined model is in Table C.1.

The refined model consists of 20 species, 39 reactions (some of them reversible), 54

kinetic parameters. We recall that the basic model had 10 species, 12 reactions and

16 kinetic parameters. We focus now on the numerical setup of the refined model

so that it is a quantitative refinement of the model in [19], as defined in Section 2.

We first introduce the following notations:

Rhsf = rhsf + rhsf(1);

Rhsf2 = rhsf2+ rhsf2
(1)+ rhsf2

(2);

Rhsf3 = rhsf3+ rhsf3
(1)+ rhsf3

(2)+ rhsf3
(3);

Rhsf3:Rhse = rhsf3: rhse+ rhsf3
(1): rhse+ rhsf3

(2): rhse+ rhsf3
(3): rhse;

Rhsp:Rhsf = rhsp: rhsf + rhsp: rhsf(1).

We aim to identify some values for the kinetic parameters of the refined model

in such a way that its system of differential equations is identical to the system

associated to the initial model, modulo a variable renaming where hsf, hsf2, hsf3,
hsf3: hse, and hsp: hsf are replaced by Rhsf, Rhsf2, Rhsf3, Rhsf3:Rhse, and Rhsp:Rhsf,
respectively. To drive this process, we write the ODEs for [Rhsf], [Rhsf2],[Rhsf3],
[Rhsf3:Rhse] and for [Rhsp:Rhsf], see Table C.2, based on the system of ODEs in

Table C.1. We then choose the values of the kinetic parameters in such a way that

the right hand side of each ODE in Table C.2 becomes identical to the right hand

side of the corresponding ODE in Table A.1, modulo the variable renaming above.

For example, we aim to choose the kinetic parameters of the refined model in such
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a way that the ODE corresponding to Rhsf in Table C.2 is identical to the ODE

corresponding to hsf in Table A.1, modulo the variable renaming above. To identify

the first term of the ODE for Rhsf (in the form written in Table C.2) with the first

term of the ODE for hsf (in the form written in Table A.1), it is enough to set

r+1 = k+1 , r
+
2 = 2k+1 , and r+3 = k+1 . A similar reasoning for all terms of all ODEs

leads to a solution.

Due to space limitations, we skip all details and only include the table listing

the identified values for the parameters in Appendix D. Clearly, the solution is not

unique. However, to find one, we cannot count on solving the systems of ODEs in

Tables A.1 and C.2; in fact these systems cannot be solved analytically. Instead, we

simply chose the values of the kinetic parameters of the refined model as expressions

of the kinetic parameters of the original model, in such a way that the ODEs in

Table C.2 can be rewritten to the equations in Table A.1, modulo the variable

renaming above. Based also on the way we set up the initial values of the refined

variables, it follows that the systems of differential equations associated to the initial

model and to the refined one have identical initial conditions. Thus, it follows from

Lemma 2.1 that conditions (2) and (3) are satisfied, i.e., the second model is indeed

a quantitative refinement of the initial model in Table 1.

4 Discussion

We focus in this paper on quantitative model refinement as an essential stage within

the complex process of model development in systems biology. In particular, we

analyse the case when the model is refined by replacing one species with several

subspecies. Specifically, we show that, by attaining the numerical setup of the

refined model from that of the initial model, we obtain a quantitative refinement

which preserves previously obtained numerical properties of the model, e.g., model

fit and validation, see [3].

We refined the model from [19] by considering only one acetylation site for each

hsf molecule. This led to a significant augmentation in the number of reactions of

the refined model and, consequently, in the number of parameters. While the basic

model comprises a set of 12 reactions involving 10 different species and 16 kinetic

rate constants, the refined model contains a number of 39 reactions involving 20

species and 54 kinetic rate constants. Fitting a model of this proportion implies a

lot of time and computational resources. However, with our approach, we were able

to build a refined model, with a satisfactory numerical behaviour (as defined in our

notion of quantitative refinement), avoiding any supplementary model fit.

Our solution to the problem of setting the kinetic parameters of the refined model

is clearly not unique. Since the systems of ODEs corresponding to the original and to

the refined model are in general impossible to solve analytically, we adopt a symbolic

approach where we make sure that the two systems of ODEs are isomorphic through

the variable renaming given by the data refinement relationship. In the absence of

any biological knowledge regarding the kinetic parameters of the refined model,

our solution is only driven by the symbolic approach described above. If there is
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biological knowledge about some of the values of the parameters of the refined model,

then such knowledge can be taken into consideration in the form of constraint in our

symbolic approach. The existence of a solution in such a case, as well as effectively

constructing one appear as interesting problems in this context.

We only focused in this paper on refining the basic heat shock response model

of [19] in a quantitatively correct way to include some of the details of the acetylation

of hsf. Due to lack of space, we did not include in the refined model the details

regarding the role that the acetylation of hsf plays in fine-tuning the heat shock

response, as described in [23]. We plan to return to these aspects in a separate

study.
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A The original ODE-based model for the heat shock
response

Table A.1
The system of ODEs associated with the biochemical model proposed in [19].

d[hsf]/dt = −2k+1 [hsf]2 + 2k−1 [hsf2]− k+2 [hsf][hsf2] + k−2 [hsf3]

−k+5 [hsf][hsp] + k−5 [hsp: hsf] + k6[hsf2][hsp]

+2k7[hsf3][hsp] + 2k8[hsf3: hse][hsp]

d[hsf2]/dt = k+1 [hsf]
2 − k−1 [hsf2]− k+2 [hsf][hsf2] + k−2 [hsf3]

−k6[hsf2][hsp]
d[hsf3]/dt = k+2 [hsf][hsf2]− k−2 [hsf3]− k+3 [hsf3][hse] + k−3 [hsf3: hse]

−k7[hsf3][hsp]
d[hse]/dt = −k+3 [hsf3][hse] + k−3 [hsf3: hse] + k8[hsf3: hse][hsp]

d[hsf3: hse]/dt = k+3 [hsf3][hse]− k−3 [hsf3: hse]− k8[hsf3: hse][hsp]

d[hsp]/dt = k4[hsf3: hse]− k+5 [hsf][hsp] + k−5 [hsp: hsf]− k6[hsf2][hsp]

−k7[hsf3][hsp]− k8[hsf3: hse][hsp]− k+11[hsp][mfp]

+(k−11 + k12)[hsp:mfp]− k9[hsp]

d[hsp: hsf]/dt = k+5 [hsf][hsp]− k−5 [hsp: hsf] + k6[hsf2][hsp]

+k7[hsf3][hsp] + k8[hsf3: hse][hsp]
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d[mfp]/dt = φT [prot]− k+11[hsp][mfp] + k−11[hsp:mfp]

d[hsp:mfp]/dt = k+11[hsp][mfp]− (k−11 + k12)[hsp:mfp]

d[prot]/dt = −φT [prot] + k12[hsp:mfp]

B The refined model for the heat shock response

Table B.1: The list of reactions for the refined model. For an irreversible reaction qi, ri denotes its kinetic
rate constant. For a reversible reaction qi, we denote by r+i and r−i the kinetic rate constants of its
‘left-to-right’ and ‘right-to-left’ directions, respectively.

Reaction
Kinetic rate

constants

2 rhsf � rhsf2 r+1 , r
−
1

rhsf + rhsf(1) � rhsf2
(1) r+2 , r

−
2

2rhsf(1) � rhsf2
(2) r+3 , r

−
3

rhsf + rhsf2 � rhsf3 r+4 , r
−
4

rhsf(1) + rhsf2 � rhsf3
(1) r+5 , r

−
5

rhsf +rhsf2
(1) � rhsf3

(1) r+6 , r
−
6

rhsf(1) + rhsf2
(1) � rhsf3

(2) r+7 , r
−
7

rhsf +rhsf2
(2) � rhsf3

(2) r+8 , r
−
8

rhsf(1) + rhsf2
(2) � rhsf3

(3) r+9 , r
−
9

rhsf3+ rhse � rhsf3: rhse r+10, r
−
10

rhsf3
(1) + rhse � rhsf3

(1): rhse r+11, r
−
11

rhsf3
(2) + rhse � rhsf3

(2): rhse r+12, r
−
12

rhsf3
(3) + rhse � rhsf3

(3): rhse r+13, r
−
13

rhsf3: rhse→ rhsf3: rhse+ rhsp r14

rhsf3
(1): rhse→ rhsf3

(1): rhse+ rhsp r15

rhsf3
(2): rhse→ rhsf3

(2): rhse+ rhsp r16

rhsf3
(3): rhse→ rhsf3

(3): rhse+ rhsp r17

rhsp+ rhsf � rhsp: rhsf r+18, r
−
18

rhsp+rhsf(1) � rhsp: rhsf(1) r+19, r
−
19

rhsp+ rhsf2 → rhsp: rhsf + rhsf r20
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Table B.1: The list of reactions for the refined model - Continued

rhsp+rhsf2
(1) → rhsp: rhsf +rhsf(1) r21

rhsp+rhsf2
(1) → rhsp: rhsf(1)+ rhsf r22

rhsp+rhsf2
(2) → rhsp: rhsf(1)+rhsf(1) r23

rhsp+ rhsf3 → rhsp: rhsf +2 ∗ rhsf r24

rhsp+rhsf3
(1) → rhsp: rhsf +rhsf(1) + rhsf r25

rhsp+rhsf3
(1) → rhsp: rhsf(1)+2 ∗ rhsf r26

rhsp+rhsf3
(2) → rhsp: rhsf +2rhsf(1) r27

rhsp+rhsf3
(2) → rhsp: rhsf(1)+rhsf(1) + rhsf r28

rhsp+rhsf3
(3) → rhsp: rhsf(1)+2rhsf(1) r29

rhsp+ rhsf3: rhse→ rhsp: rhsf +2 rhsf + rhse r30

rhsp+ rhsf3
(1): rhse→ rhsp: rhsf(1)+2 rhsf + rhse r31

rhsp+ rhsf3
(1): rhse→ rhsp: rhsf +rhsf(1) + rhsf + rhse r32

rhsp+ rhsf3
(2): rhse→ rhsp: rhsf(1)+rhsf(1) + rhsf + rhse r33

rhsp+ rhsf3
(2): rhse→ rhsp: rhsf +2rhsf(1) + rhse r34

rhsp+ rhsf3
(3): rhse→ rhsp: rhsf(1)+2rhsf(1) + rhse r35

rhsp→ ∅ r36

rprot→ rmfp r37

rhsp+ rmfp � rhsp: rmfp r+38, r
−
38

rhsp: rmfp→ rhsp+ rprot r39
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C The ODE-based model of the refined heat shock re-
sponse model

Table C.1: The system of differential equations of the mathematical model associated with the refined heat
shock response model

d[rhsf]/dt = −2r+1 [rhsf]2 + 2r−1 [rhsf2]− r+2 [rhsf][rhsf
(1)] + r−2 [rhsf2

(1)]

−r4+[rhsf][rhsf2] + r4
−[rhsf3]− r6

+[rhsf][rhsf2
(1)] + r6

−[rhsf3(1)]

−r8+[rhsf][rhsf2(2)] + r8
−[rhsf3(2)]− r18

+[rhsp][rhsf]

+r18
−[rhsp: rhsf] + r20[rhsp][rhsf2] + r22[rhsp][rhsf2

(1)]

+2r24[rhsp][rhsf3] + r25[rhsp][rhsf3
(1)] + 2r26[rhsp][rhsf3

(1)]

+r28[rhsp][rhsf3
(2)] + 2r30[rhsp][rhsf3: rhse]

+2r31[rhsp][rhsf3
(1): rhse] + r32[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse]

d[rhsf(1)]/dt = −r+2 [rhsf][rhsf(1)] + r−2 [rhsf2
(1)]− 2r3

+[rhsf(1)]
2

+2r3
−[rhsf2(2)]− r5

+[rhsf(1)][rhsf2] + r5
−[rhsf3(1)]

−r7+[rhsf(1)][rhsf2(1)] + r7
−[rhsf3(2)]− r9

+[rhsf(1)][rhsf2
(2)]

+r9
−[rhsf3(3)]− r19

+[rhsp][rhsf(1)] + r19
−[rhsp: rhsf(1)]

+r21[rhsp][rhsf2
(1)] + r23[rhsp][rhsf2

(2)] + r25[rhsp][rhsf3
(1)]

+2r27[rhsp][rhsf3
(2)] + r28[rhsp][rhsf3

(2)] + 2r29[rhsp][rhsf3
(3)]

+r32[rhsp][rhsf3
(1): rhse] + r33[rhsp][rhsf3

(2): rhse]

+2r34[rhsp][rhsf3
(2): rhse] + 2r35[rhsp][rhsf3

(3): rhse]

d[rhsf2]/dt = r+1 [rhsf]
2 − r−1 [rhsf2]− r+4 [rhsf][rhsf2] + r−4 [rhsf3]

−r+5 [rhsf(1)][rhsf2] + r−5 [rhsf3
(1)]− r20[rhsp][rhsf2]

d[rhsf2
(1)]/dt = r+2 [rhsf][rhsf

(1)]− r−2 [rhsf2
(1)]− r+6 [rhsf][rhsf2

(1)]

+r−6 [rhsf3
(1)]− r+7 [rhsf

(1)][rhsf2
(1)] + r−7 [rhsf3

(2)]

−r21[rhsp][rhsf2(1)]− r22[rhsp][rhsf2
(1)]

d[rhsf2
(2)]/dt = r+3 [rhsf

(1)]2 − r−3 [rhsf2
(2)]− r+8 [rhsf][rhsf2

(2)]

+r−8 [rhsf3
(2)]− r+9 [rhsf

(1)][rhsf2
(2)] + r−9 [rhsf3

(3)]

−r23[rhsp][rhsf2(2)]
d[rhsf3]/dt = r+4 [rhsf][rhsf2]− r−4 [rhsf3]− r+10[rhsf3][rhse]

+r−10[rhsf3: rhse]− r24[rhsp][rhsf3]
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Table C.1: The system of differential equations of the mathematical model associated with the biochemical
model - Continued

d[rhsf3
(1)]/dt = r+5 [rhsf

(1)][rhsf2]− r−5 [rhsf3
(1)] + r+6 [rhsf][rhsf2

(1)]

−r−6 [rhsf3(1)]− r+11[rhsf3
(1)][rhse] + r−11[rhsf3

(1): rhse]

−r25[rhsp][rhsf3(1)]− r26[rhsp][rhsf3
(1)]

d[rhsf3
(2)]/dt = r+7 [rhsf

(1)][rhsf2
(1)]− r−7 [rhsf3

(2)] + r+8 [rhsf][rhsf2
(2)]

−r−8 [rhsf3(2)]− r+12[rhsf3
(2)][rhse] + r−12[rhsf3

(2): rhse]

−r27[rhsp][rhsf3(2)]− r28[rhsp][rhsf3
(2)]

d[rhsf3
(3)]/dt = r+9 [rhsf

(1)][rhsf2
(2)]− r−9 [rhsf3

(3)]− r+13[rhsf3
(3)][rhse]

+r−13[rhsf3
(3): rhse]− r29[rhsp][rhsf3

(3)]

d[rhse]/dt = −r+10[rhsf3][rhse] + r−10[rhsf3: rhse]− r+11[rhsf3
(1)][rhse]

+r−11[rhsf3
(1): rhse]− r+12[rhsf3

(2)][rhse] + r−12[rhsf3
(2): rhse]

−r+13[rhsf3(3)][rhse] + r−13[rhsf3
(3): rhse] + r30[rhsp][rhsf3: rhse]

+r31[rhsp][rhsf3
(1): rhse] + r32[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse] + r34[rhsp][rhsf3

(2): rhse]

+r35[rhsp][rhsf3
(3): rhse]

d[rhsf3: rhse]/dt = r+10[rhsf3][rhse]− r−10[rhsf3: rhse]

−r30[rhsp][rhsf3: rhse]
d[rhsf3

(1): rhse]/dt = r+11[rhsf3
(1)][rhse]− r−11[rhsf3

(1): rhse]

−r31[rhsp][rhsf3(1): rhse]− r32[rhsp][rhsf3
(1): rhse]

d[rhsf3
(2): rhse]/dt = r+12[rhsf3

(2)][rhse]− r−12[rhsf3
(2): rhse]

−r33[rhsp][rhsf3(2): rhse]− r34[rhsp][rhsf3
(2): rhse]

d[rhsf3
(3): rhse]/dt = r+13[rhsf3

(3)][rhse]− r−13[rhsf3
(3): rhse]

−r35[rhsp][rhsf3(3): rhse]
d[rhsp]/dt = r14[rhsf3: rhse] + r15[rhsf3

(1): rhse] + r16[rhsf3
(2): rhse]

+r17[rhsf3
(3): rhse]− r+18[rhsp][rhsf] + r−18[rhsp: rhsf]

−r+19[rhsp][rhsf(1)] + r−19[rhsp: rhsf
(1)]− r20[rhsp][rhsf2]

−r21[rhsp][rhsf2(1)]− r22[rhsp][rhsf2
(1)]− r23[rhsp][rhsf2

(2)]

−r24[rhsp][rhsf3]− r25[rhsp][rhsf3
(1)]− r26[rhsp][rhsf3

(1)]

−r27[rhsp][rhsf3(2)]− r28[rhsp][rhsf3
(2)]− r29[rhsp][rhsf3

(3)]
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Table C.1: The system of differential equations of the mathematical model associated with the biochemical
model - Continued

−r30[rhsp][rhsf3: rhse]− r31[rhsp][rhsf3
(1): rhse]

−r32[rhsp][rhsf3(1): rhse]− r33[rhsp][rhsf3
(2): rhse]

−r34[rhsp][rhsf3(2): rhse]− r35[rhsp][rhsf3
(3): rhse]

−r36[rhsp]− r+38[rhsp][rmfp] + r−38[rhsp: rmfp]

+r39[rhsp][rmfp]

d[rhsp: rhsf]/dt = r+18[rhsp][rhsf]− r−18[rhsp: rhsf] + r20[rhsp][rhsf2]

+r21[rhsp][rhsf2
(1)] + r24[rhsp][rhsf3] + r25[rhsp][rhsf3

(1)]

+r27[rhsp][rhsf3
(2)] + r30[rhsp][rhsf3: rhse]

+r32[rhsp][rhsf3
(1): rhse] + r34[rhsp][rhsf3

(2): rhse]

d[rhsp: rhsf(1)]/dt = r19
+[rhsp][rhsf(1)]− r19

−[rhsp: rhsf(1)]

+r22[rhsp][rhsf2
(1)] + r23[rhsp][rhsf2

(2)]

+r26[rhsp][rhsf3
(1)] + r28[rhsp][rhsf3

(2)]

+r29[rhsp][rhsf3
(3)] + r31[rhsp][rhsf3

(1): rhse]

+r33[rhsp][rhsf3
(2): rhse] + r35[rhsp][rhsf3

(3): rhse]

d[rhsp: rmfp]/dt = r+38[rhsp][rmfp]− (r−38 + r39)[rhsp: rmfp]

d[rmfp]/dt = r37[rprot]− r+38[rhsp][rmfp] + r−38[rhsp: rmfp]

d[rprot]/dt = −r37[rprot] + r39[rhsp: rmfp]

Table C.2: The ODEs corresponding to Rhsf, Rhsf2, Rhsf3, Rhsf3:Rhse, and Rhsp:Rhsf in the refined model

d[Rhsf]/dt = −2(r+1 [rhsf]2 + r+2 [rhsf][rhsf
(1)] + r3

+[rhsf(1)]2) + 2(r−1 [rhsf2]

+r−2 [rhsf2
(1)] + r3

−[rhsf2(2)])− (r4
+[rhsf][rhsf2] + r6

+[rhsf][rhsf2
(1)]

+r8
+[rhsf][rhsf2

(2)] + r5
+[rhsf(1)][rhsf2] + r7

+[rhsf(1)][rhsf2
(1)]

+r9
+[rhsf(1)][rhsf2

(2)]) + (r4
−[rhsf3] + (r5

− + r6
−)[rhsf3(1)]

+(r7
− + r8

−)[rhsf3(2)] + r9
−[rhsf3(3)])− [rhsp](r18

+[rhsf]

+r19
+[rhsf(1)]) + (r18

−[rhsp: rhsf] + r19
−[rhsp: rhsf(1)])

+[rhsp](r20[rhsf2] + (r21 + r22)[rhsf2
(1)] + r23[rhsf2

(2)])

+2[rhsp](r24[rhsf3] + (r25 + r26)[rhsf3
(1)] + (r27 + r28)[rhsf3

(2)]
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Table C.2: The ODEs corresponding to Rhsf, Rhsf2, Rhsf3, Rhsf3:Rhse, and Rhsp:Rhsf in the refined model
- Continued

+r29[rhsf3
(3)]) + 2[rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3

(1): rhse]

+(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])

d[Rhsf2]/dt = (r+1 [rhsf]
2 + r+2 [rhsf][rhsf

(1)] + r+3 [rhsf
(1)]2)− (r−1 [rhsf2]

+r−2 [rhsf2
(1)] + r−3 [rhsf2

(2)])− (r+4 [rhsf][rhsf2] + r+6 [rhsf][rhsf2
(1)]

+r+8 [rhsf][rhsf2
(2)] + r+5 [rhsf

(1)][rhsf2] + r+7 [rhsf
(1)][rhsf2

(1)]

+r+9 [rhsf
(1)][rhsf2

(2)]) + (r−4 [rhsf3] + (r−5 + r−6 )[rhsf3
(1)])

+(r−7 + r−8 )[rhsf3
(2)] + r−9 [rhsf3

(3)])− [rhsp](r20[rhsf2]

+(r21 + r22)[rhsf2
(1)] + r23[rhsf2

(2)])

d[Rhsf3]/dt = (r+4 [rhsf][rhsf2] + r+6 [rhsf][rhsf2
(1)] + r+8 [rhsf][rhsf2

(2)]

+r+5 [rhsf
(1)][rhsf2] + r+7 [rhsf

(1)][rhsf2
(1)] + r+9 [rhsf

(1)][rhsf2
(2)])

−(r−4 [rhsf3] + (r−5 + r−6 )[rhsf3
(1)] + (r−7 + r−8 )[rhsf3

(2)] + r−9 [rhsf3
(3)])

−[rhse](r+10[rhsf3] + r+11[rhsf3
(1)] + r+12[rhsf3

(2)] + r+13[rhsf3
(3)])

+(r−10[rhsf3: rhse] + r−11[rhsf3
(1): rhse] + r−12[rhsf3

(2): rhse]

+r−13[rhsf3
(3): rhse])− [rhsp](r24[rhsf3] + (r25 + r26)[rhsf3

(1)]

+(r27 + r28)[rhsf3
(2)] + r29[rhsf3

(3)])

d[Rhsf3:Rhse]/dt = [rhse](r+10[rhsf3] + r+11[rhsf3
(1)] + r+12[rhsf3

(2)]

+r+13[rhsf3
(3)])− (r−10[rhsf3: rhse] + r−11[rhsf3

(1): rhse] + r−12[rhsf3
(2): rhse]

+r−13[rhsf3
(3): rhse])− [rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3

(1): rhse]

+(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])

d[Rhsp:Rhsf]/dt = [rhsp](r+18[rhsf] + r19
+[rhsf(1)])− (r−18[rhsp: rhsf]

+r19
−[rhsp: rhsf(1)]) + [rhsp](r20[rhsf2] + (r21 + r22)[rhsf2

(1)]

+r23[rhsf2
(2)]) + [rhsp](r24[rhsf3] + (r25 + r26)[rhsf3

(1)]

+(r27 + r28)[rhsf3
(2)] + r29[rhsf3

(3)])

+[rhsp](r30[rhsf3: rhse] + (r31 + r32)[rhsf3
(1): rhse]

(r33 + r34)[rhsf3
(2): rhse] + r35[rhsf3

(3): rhse])
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D The numerical setup of the refined model

Table D.1
The numerical values of the parameters of the refined model

r+1 = k+1 ; r+8 = k+2 ; r16 = k4; r28 = k7/2;

r−1 = k−1 ; r−8 = k−2 /2; r17 = k4; r29 = k7;

r+2 = 2 · k+1 ; r+9 = k+2 ; r18
+ = k+5 ; r30 = k8;

r−2 = k−1 ; r−9 = k−2 ; r18
− = k−5 ; r31 = k8/2;

r+3 = k+1 ; r10
+ = k+3 ; r19

+ = k+5 ; r32 = k8/2;

r−3 = k−1 ; r10
− = k−3 ; r19

− = k−5 ; r33 = k8/2;

r+4 = k+2 ; r11
+ = k+3 ; r20 = k6; r34 = k8/2;

r−4 = k−2 ; r11
− = k−3 ; r21 = k6/2; r35 = k8;

r+5 = k+2 ; r12
+ = k+3 ; r22 = k6/2; r36 = k9;

r−5 = k−2 /2; r12
− = k−3 ; r23 = k6; r37 = ΦT ;

r+6 = k+2 ; r13
+ = k+3 ; r24 = k7; r+38 = k11

+;

r−6 = k−2 /2; r13
− = k−3 ; r25 = k7/2; r−38 = k11

−;
r+7 = k+2 ; r14 = k4; r26 = k7/2; r39 = k12

r−7 = k−2 /2; r15 = k4; r27 = k7/2;
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